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A B S T R A C T

Secret image sharing schemes are employed to safeguard the confidentiality and availability of critical
commercial or military images. However, many of the existing image sharing schemes have some security
flaws that can reveal key elements of the shared secret image. In this paper, to overcome these weaknesses, we
propose a new secret image sharing scheme which utilizes Optimal Asymmetric Encryption Padding (OAEP) and
Information Dispersal Algorithms (IDA). The proposed scheme provides computational security, small shadow
size, and better performance in share generation and secret reconstruction. We also analyze the security of
the proposed scheme formally and prove that the confidentiality of the secret image is guaranteed in the face
of computationally bounded adversaries. Additionally, we introduce an edge-based steganography method to
conceal the participants’ shares in cover images. The proposed technique achieves higher visual quality and better
resistance against steganalysis methods. Finally, experimental results confirm the efficiency and effectiveness of
the proposed scheme.

1. Introduction

Nowadays with the rapid expansion of computer networks, trans-
mitting data over a network is such a common and popular task that
without it our daily routines would encounter numerous difficulties.
However, there are critical and confidential intelligence, diplomatic, or
commercial data that needs to be protected against unauthorized access
or manipulation during transmission and storage.

The most common approaches for preserving the confidentiality of
a sensitive data are cryptography and steganography. Cryptography is the
process of converting data from a readable state to apparent nonsense,
in such a way that only entities with access to the encryption key can
reverse the process and return the data to its initial readable state. On
the other hand, steganography does not change the state of data and
only conceals it in a carrier medium so that an adversary cannot detect
the presence of data and therefore access it.

However, both of these methods have a common pitfall. In cryp-
tography, if the encrypted data or the encryption key becomes lost
or corrupted during storage or transmission, the secret data is lost. In
steganography, if the carrier media gets damaged or destroyed, in most
cases, the embedded secret will become unrecoverable. This problem is
commonly known as the single point of failure.

To solve this problem, the concept of (𝑡, 𝑛)-threshold secret sharing
was suggested by Blakley [1] and Shamir [2]. A (𝑡, 𝑛)-threshold secret
sharing scheme divides the secret data among 𝑛 participants in such
a way that 𝑡 or more participants can reconstruct the original secret by
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pooling their shares together, and any less than 𝑡 shares reveals no useful
information about the shared secret.

The first secret sharing methods were only suitable for a few types of
data, such as passwords and encryption keys. However, with the expan-
sion of network bandwidths and the widespread use of different kinds
of digital data such as image, audio, and video, it became necessary
to design secret sharing methods for them as well. Particularly, how to
share a secret image has attracted the attention of researchers because
of the widespread uses of images in real-world applications.

Naor and Shamir [3] proposed a (𝑡, 𝑛) secret image sharing scheme
called Visual Secret Sharing (VSS) in which 𝑛 shares are printed on
𝑛 transparent papers and the secret image can be reconstructed by
stacking 𝑡 shares together. The most important property of VSS is that the
secret reconstruction can be done without any computational process,
and the secret image can be recovered directly by the human visual
system. However, the VSS scheme was only suitable for binary images
and it had some major drawbacks such as share size expansion, limited
contrast, and reconstructed secret’s poor visual quality.

To overcome these problems, with inspirations from Shamir’s (𝑡, 𝑛)-
threshold scheme, Thien and Lin proposed a polynomial based secret
image sharing (PBSIS) scheme. The most important characteristics of
their method was the reduction of shares size to 1

𝑡 of the original secret
image. Due to the significance of this feature, their method was used
as a basis for many succeeding secret image sharing schemes [4–13]. It
was believed that their scheme was secure, and any less than 𝑡 shares
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were not revealing any useful information about the secret image, but
as we will show in Section 3, this assumption is not true.

Instead of Shamir’s scheme, Blakley’s method can also be used as
the basis for image sharing [14]. Additionally, the Asmuth–Bloom [15]
secret sharing scheme which is based on the Chinese Remainder Theo-
rem (CRT) may also be used for secret image sharing [16]. The major
disadvantage of Blakley’s and CRT based approaches is their share size
which is as large as the secret image. This drawback alongside their
significant computational complexity makes them unusable in most
practical scenarios.

Some researchers used Linear Memory Cellular Automata (LMCA) as
a basis for secret image sharing [17–19]. LMCA’s linear computational
complexity makes it ideal for sharing large images. However, they have
a significant limitation which makes them impractical for real-world
applications. In LMCA all of the subsets of participants with 𝑡 shares
cannot recover the secret, and only the subsets with 𝑡 consecutive shares
can reverse the LMCA and reconstruct the secret image.

Furthermore, the generated shares of all secret image sharing
schemes are noise-like images and they may attract the attention of
attackers during transmission or storage. Therefore the use of steganog-
raphy techniques was proposed to conceal the existence of image
shares. Over the years, different steganography methods such as simple
LSB substitution [6,9,18,20,21], LSB substitution with Optimal Pixel
Adjustment Process (OPAP) [8,12], Exploiting Modification Direction
(EMD) [10], Modulus Operation [22], PSNR Estimation [13], and
Integer Wavelet Transform [11] were used in secret image sharing
schemes.

In our previous paper [23], we used a modified version of Rivest’s
All-or-Nothing Transform (AONT) [24] in combination with an Infor-
mation Dispersal Algorithm (IDA) [25,26] to create a computationally
secure secret image sharing scheme. The scheme provided small shadow
size and had major performance improvements compared to the other
methods. However, since the security of Rivest’s AONT can only be
investigated intuitively, no formal security analysis of the method were
given.

As we mentioned before, from all of the introduced secret sharing
methods, most of the previous image sharing schemes [4–13] use
Shamir’s method as their basis. Therefore, in this paper, we first review
Shamir’s method and the Polynomial-Based Secret Image Sharing (PB-
SIS) schemes that are based on it. Then we point out some of the security
weaknesses of these methods. Next, to overcome these drawbacks,
we introduce our computationally secure secret image sharing scheme
which is an improved version of our previous work [23]. The proposed
scheme uses Optimal Asymmetric Encryption Padding (OAEP) [27] to
achieve computational security and an Information Dispersal Algorithm
(IDA) [25,26] to generate the shares of participants.

Using OAEP allows us to formally analyze the security of our
scheme in the Random Oracle (RO) model. Such analysis is important
because in a secret image sharing scheme it is crucial to guarantee the
confidentiality of the secret image in the face of adversaries. Therefore,
we provide a security analysis to prove that an adversary with limited
computational power – while having less than 𝑡 shares – cannot learn
any useful information about the secret image.

As mentioned before, the generated shares are noise-like and may
attract the attention of attackers. Therefore, in order to complete the
work, it is necessary to provide a way to securely send the generated
shares. In this regard, this paper proposes a novel steganographic
method based on Fully Exploiting Modification Direction (FEMD) [28]
and a simple edge detection algorithm to hide the shares in cover
images.

The major contributions of this paper can be summarized as follows:

1. Proposing a computationally secure secret image sharing scheme
based on OAEP and IDAs. Using OAEP allows us to ensure the
confidentiality of the secret image and an IDA can generate
the shares and reconstruct the secret with significantly better
performance compared to the other methods.

2. Investigating the security of the proposed scheme in the ‘‘Ran-
dom Oracle’’ model. This analysis proves that a computationally
bounded adversary with less that 𝑡 shares cannot learn any useful
information about the shared secret image.

3. Introducing an edge-based steganographic method which uses
an edge detection algorithm to identify the edge areas of an
image and then embeds the noise-like shares in those regions.
The embedding process takes into account the size of the shares,
which means that small shares are embedded only in the most
distinct edges and therefore less distortion is introduced into the
cover image. This approach achieves high stego-image quality
and has better resistance against steganalysis attacks.

The rest of this paper is organized as follows. Preliminaries and re-
lated works are described in Section 2. The visual security of polynomial-
based secret image sharing schemes is investigated in Section 3. The pro-
posed ‘‘secret image sharing with steganography’’ scheme is introduced
in Section 4. Section 5 analyzes the security of the proposed scheme,
the experimental results are presented in Section 6, and finally Section 7
states the conclusions of the paper.

2. Preliminaries

In this section, the preliminaries of different parts of the present
work have been described. First, Shamir’s (𝑡, 𝑛) threshold secret sharing
scheme is briefly overviewed, and then the secret image sharing schemes
that were based on it are introduced. Finally, we will briefly describe
notions of the All-or-Nothing Transform (AONT) and Information Dis-
persal Algorithm (IDA), the two building blocks of our proposed secret
image sharing scheme.

2.1. Shamir’s (t, n) threshold secret sharing scheme

In 1979, Shamir [2] proposed a (𝑡, 𝑛) threshold secret sharing scheme
that was based on polynomial interpolation. In his scheme, the secret
data 𝑆 is divided into 𝑛 shares 𝑆1, 𝑆2,… , 𝑆𝑛 in such a way that 𝑡
(𝑡 ≤ 𝑛) shares can reconstruct the secret using Lagrange’s polynomial
interpolation, but less than 𝑡 shares can learn nothing about the secret
𝑆.

To share the secret 𝑆 among 𝑛 participants a polynomial of degree
𝑡 − 1 is generated:

𝑓 (𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 +⋯ + 𝑎𝑡−1𝑥

𝑡−1 𝑚𝑜𝑑 𝑝 (1)

Eq. (1) uses modular arithmetic, and all of the calculations are per-
formed in mod 𝑝, which should be a prime number larger than both
𝑆 and 𝑛. Additionally in Eq. (1), 𝑎0 is the secret 𝑆 and 𝑎1 to 𝑎𝑡−1 are
random numbers chosen uniformly from [0, 𝑝 − 1].

In order to calculate the participants shares, a unique and positive
identifier 𝑥𝑖 is assigned to the 𝑖th participant, and its share is calculated
as follows:

𝑆𝑖 = 𝑓 (𝑥𝑖) 𝑚𝑜𝑑 𝑝 𝑓𝑜𝑟 𝑖 = 1, 2,… , 𝑛 (2)

From Eq. (2), it is evident that the size of each share 𝑆𝑖 is in the range
[0, 𝑝−1], hence the share’s size does not exceed the original secret’s size.
To recover the secret, when 𝑡 or more shares (𝑆𝑖, 𝑥𝑖) are available, the
original 𝑡 − 1 degree polynomial can be reconstructed using Lagrange
polynomial interpolation [2].

2.2. Polynomial based secret image sharing scheme

Based on Shamir’s method, Thien and Lin [4] proposed the first
polynomial based secret image sharing scheme (which we call PBSIS
henceforth). Their scheme first permutes a grayscale image randomly
using a secret key, then divides it into several non-overlapping blocks.
Each block consists of 𝑡 pixels and they are used as the 𝑡 coefficients
𝑎0, 𝑎1,… , 𝑎𝑡−1 of the polynomial (1).

79



A.M. Ahmadian and M. Amirmazlaghani Signal Processing: Image Communication 74 (2019) 78–88

Similar to Shamir’s scheme, each participant will have a unique
identifier 𝑥𝑖 and the value of polynomial in that point 𝐹 (𝑥𝑖) will be
a pixel of that participants share. This operation is repeated until all
of the secret image blocks are processed. Finally, the share pixels of
each participant are merged to form a share image (which we will call
shadow hereafter).

Since PBSIS does not use any random coefficients and 𝑡 secret pixels
are embedded directly in all of the polynomial (1) coefficients, the size
of shadows is reduced to 1

𝑡 of the secret image’s. This is especially
important because the size of the secret images are usually quite large,
and a way to reduce the size of shadows can be beneficial while
transmitting them over a network, storing them, or embedding them in a
carrier media. As a result of these benefits,most of the succeeding secret
image sharing schemes used the PBSIS approach for sharing images [4–
13]. However, PBSIS’s approach weakens the security of the original
Shamir’s scheme, and we will discuss some of these security weaknesses
in Section 3.

2.3. All-or-Nothing Transform

All-or-Nothing Transform (AONT) was first introduced by Rivest [24]
as an encryption mode to increase a cryptographic system’s security
against exhaustive key search attacks without increasing its key length.

AONT is an unkeyed, invertible and randomized transformation that
maps a sequence of input blocks 𝑑1, 𝑑2,… , 𝑑𝑚 to a sequence of output
blocks 𝑐1, 𝑐2,… , 𝑐𝑚′ under the following conditions:

• If all output blocks 𝑐1, 𝑐2,… , 𝑐𝑚′ are available, it is fairly easy to
invert the transformation and recover the original input blocks
𝑑1, 𝑑2,… , 𝑑𝑚.

• Even if one of the output blocks is missing, it is computationally
infeasible to invert the transformation or learn any information
about the input blocks.

2.4. Information dispersal algorithm

In a network, an Information Dispersal Algorithm (IDA) distributes
a data among 𝑛 nodes in such a way that the recovery of data is possible
if 𝑘 or more nodes are active, where 𝑛 and 𝑘 are parameters satisfying
1 ≤ 𝑘 ≤ 𝑛.

IDA was first introduced by Rabin [25] to guarantee availability and
fault tolerance capability of data in a network. The biggest difference
between a secret sharing scheme and an IDA is the secrecy of data and
shares. While in a secret sharing scheme confidentiality of the original
data is very important and shares should not leak any information about
it, in an IDA availability of the data is important and IDAs do not deal
with the secrecy of information.

The basic idea of an IDA is to add some redundancy to the data and
then partition it among 𝑛 parties. Therefore an information dispersal
algorithm can be implemented using any type of erasure codes [26,29].
For example a Reed–Solomon based IDA can be illustrated as a matrix–
vector product [26]:
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The 𝑛× 𝑘 generator matrix 𝐺 is multiplied by the data vector 𝐷 and the
outcome is stored in the result vector 𝑅. Then each element of 𝑅 is sent
to a different node in the network as their share.

Any combinations of 𝑡 rows of generator matrix must produce an in-
vertible matrix. This way, for every 𝑡 elements of 𝑅, their corresponding
rows in 𝐺 creates a 𝑡 × 𝑡 invertible matrix. The available 𝑡 elements of
𝑅 multiplied by the inverted matrix will result in the initial data vector
𝐷. Therefore every 𝑡 elements of 𝑅 can reconstruct the data vector 𝐷.

Vandermonde Matrix [26,29] and Cauchy Matrix [25] are some
examples of generator matrices with such property.

Fig. 1. Camera man image and generated shares.

Fig. 2. Recovered image with only one shadow.

3. Visual security of the PBSIS based methods

Since in some regions of a secret image, the neighboring pixels
are extremely correlated, embedding pixels of the same region to the
coefficients of polynomial (1) can result in a shared pixel that is similar
to the original pixels of that region. Therefore, some areas of the
shadows will remain similar to the secret image, and consequently,
expose key elements of the secret image. Fig. 1 illustrates this security
issue.

To overcome this issue, [4] proposed to apply permutation to the
secret image before the share generation process. Such a permutation
breaks the adjacent pixels correlation and results in shadows that are
not similar to the secret image and hence do not leak any information
about it.

However, using permutation is not a completely secure approach and
it is still possible for an attacker or a malicious participant to learn some
information about the secret image [12]. For example Fig. 2 depicts the
information an adversary can learn about the secret image (1a) while
having only one share [23].

In Addition, permutation is not an entirely secure way for image
encryption, and it was proven [30] that some permutation-only image
encryption schemes are not secure against ciphertext-only attacks and
practically all of them cannot resist known/chosen-plaintext attacks.
In 2016, Jolfaei et al. [30] proposed a chosen-plaintext attack that
can break any permutation-only image encryption scheme. Therefore,
a secret image sharing scheme that uses a permutation-only image
encryption for confidentiality – at least in terms of indistinguishability
(IND-CPA) – is not secure.

4. Proposed scheme

4.1. Secret sharing phase

In this section, we are going to propose our computationally secure
secret image sharing scheme which uses a two layered structure. Instead
of permutation, our scheme uses OAEP [27] to provide confidentiality
for the secret image and a systematic IDA [31] to generate the shares.
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Fig. 3. Diagram of OAEP.

4.1.1. OAEP as an AONT
In this paper we use Optimal Asymmetric Encryption Padding

(OAEP) [27] to provide confidentiality. As it was mentioned before,
using OAEP allows us to analyze the security of our scheme in the
Random Oracle (RO) model.

For a secret data of length 𝑛 and a security parameter 𝜆, OAEP uses
the following functions:

𝐺 ∶ {0, 1}𝜆 → {0, 1}𝑛

𝐻 ∶ {0, 1}𝑛 → {0, 1}𝜆

where 𝐺 and 𝐻 are random oracles. Using these functions, 𝑂𝐴𝐸𝑃 ∶
{0, 1}𝑛 × {0, 1}𝜆 → {0, 1}𝑛+𝜆 is defined as:

𝑂𝐴𝐸𝑃𝐺,𝐻 (𝑥, 𝑦) = 𝑥 ⊕ 𝐺(𝑟) ∥ 𝑟 ⊕𝐻(𝑥 ⊕ 𝐺(𝑟))

where ∥ denotes the string concatenation, 𝑥 is the input message of
length 𝑛, 𝑟 is a random string of length 𝜆, and 𝜆 is the security parameter
of the transform (e.g. 𝜆 = 256 𝑏𝑖𝑡). A diagram of OAEP is depicted in
Fig. 3.

In practical applications, 𝐻 function can be implemented by a hash
function such as 𝑆𝐻𝐴−256 and a mask generation function like 𝑀𝐺𝐹1
can be used as function 𝐺.

4.1.2. Systematic IDA
As it was mentioned before, any erasure code can be used as an IDA.

In our scheme, we use a systematic Reed–Solomon code as an IDA to
generate the shares.

A non-systematic Reed–Solomon code can be easily converted to a
systematic one by modifying its generator matrix. However, because of
space limitations, we omit the explanation of this procedure and refer
the readers to our previous paper [23] or the original articles on the
matter [29,31].

Generally, in a non-systematic code, the output does not contain
any of the input’s symbols. On the other hand, in a systematic code,
the input data is directly encoded in the output, therefore, some of
the input elements can appear in the output. Thus, a systematic IDA
is usually considered not secure, however, in our scheme, we provide
confidentiality with OAEP, therefore, using a systematic IDA instead
of PBSIS can improve the overall performance of our scheme without
weakening its security.

4.1.3. Share generation process
Using OAEP and systematic Reed–Solomon based IDA, the proposed

secret image sharing scheme consists of the following steps:

1. Apply OAEP to the secret image 𝑆, the result will be the noise-like
image 𝐶.

2. Partition 𝐶 into 𝑡 non-overlapping, equal sized blocks.
3. Take the first unprocessed pixel from each of the 𝑡 blocks and

form the data vector 𝐷 of the IDA algorithm.
4. Using systematic IDA, map vector 𝐷 to vector 𝑅.

5. The 𝑖th element of 𝑅 is a pixel of the 𝑖th participant’s shadow
image (for 𝑖 = 0, 1,… , 𝑛).

6. Repeat steps 3 to 5, until all of the pixels are processed.
7. Finally, concatenate the pixels of each participant together and

generate the corresponding shadow image.

Fig. 4 illustrates the share generation procedure.
In most of the practical applications, compared to the large size of

secret images, 𝜆 is small and negligible. Therefore, in our scheme, the
size of shadows is roughly equal to 1

𝑡 of the secret image size.
As it was mentioned before, the generated shadows are noise-like

images, and they can attract the attention of attackers during storage
or transmission. To overcome this issue, it is conventional for secret
image sharing schemes to hide the shadows in cover images using a
steganographic method. Therefore in the next part, we are going to
introduce our proposed steganography scheme.

4.2. Steganography phase

In this section, we first introduce the FEMD method [28] which is the
basis of our steganography scheme, then we investigate the benefits of
embedding in the image’s edges. Finally, we combine the FEMD method
with a simple edge detection algorithm to create a steganographic
scheme that embeds the shadows in the edges of cover images.

4.2.1. FEMD steganography method
In 2011, Kieu and Chang proposed the Fully Exploiting Modification

Direction (FEMD) steganography method [28]. Their method had better
visual quality compared to LSB substitution and also provided embed-
ding capacities of more than 1 bpp.

FEMD partitions the cover image into non-overlapping blocks of two
pixels. In order to embed the secret data into a block, each of its pixels
can be increased or decreased by some value, and this modification
value determines the embedding capacity of the method. For example,
when each pixel can be increased or decreased by 𝑜𝑛𝑒, the embedding
capacity will be 1.5 bpp.

In the FEMD method, parameter 𝑆 defines the embedding capacity
and the limit of pixels modification. Based on this parameter, the
number of bits embedded in each pixel is 𝑘 = ⌊𝑙𝑜𝑔2𝑆2

⌋

2 and the amount
of pixel modification is limited to 𝑟 = ⌊

𝑆
2 ⌋.

Using these parameters, FEMD defines the embedding function 𝐹 as:

𝐹 (𝑔𝑖, 𝑔𝑖+1) = [(𝑆 − 1) × 𝑔𝑖 + 𝑆 × 𝑔𝑖+1] 𝑚𝑜𝑑 𝑆2 (3)

In this method, function 𝐹 is used to generate the 256 × 256 sized
mapping matrix 𝑀 . To do so, for all of the possible values of pixels
𝑔𝑖 and 𝑔𝑖+1, the function 𝐹 is calculated and its result is stored in the
element 𝑀[𝑔𝑖][𝑔𝑖+1] of the matrix. In other words:

𝑀[𝑔𝑖][𝑔𝑖+1] = 𝐹 (𝑔𝑖, 𝑔𝑖+1) 𝑓𝑜𝑟 𝑔𝑖, 𝑔𝑖+1 = 0, 1,… , 255 (4)

As it is evident from Eqs. (3) and (4), for each parameter 𝑆, we should
generate a different mapping matrix 𝑀 . Utilizing matrix 𝑀 , the data
embedding procedure of the FEMD method is as follows:

1. Partition the cover image into two-pixel blocks and the secret
message to 𝑘 bit blocks.

2. Convert the first unprocessed block of the secret message to its
corresponding decimal value 𝑑. We call this value the secret
number.

3. Calculate function 𝐹 for the first unprocessed block of the cover
image.

4. If 𝐹 (𝑔𝑖, 𝑔𝑖+1) = 𝑑, the embedding process is done and the
stego-pixels are 𝑔𝑖, 𝑔𝑖+1, otherwise search the matrix 𝑀 to find
an element such as 𝑀[𝑥][𝑦] where its value is equal to the
secret number 𝑑, then the stego-pixels will be equal to 𝑥 and 𝑦
respectively. In this search, the element 𝑀[𝑔𝑖][𝑔𝑖+1] is the center
and the searching radius is restricted to 𝑟.
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Fig. 4. Share generation process.

Fig. 5. The mapping matrix 𝑀 for 𝑆 = 3.

5. Repeat the steps of 2 to 4 until all of the secret message blocks
are processed.

For example, Fig. 5 shows the mapping matrix 𝑀 generated for
𝑆 = 3. Assume that we want to embed the secret number 8 in pixels
5 and 2. Because 𝐹 (5, 2) ≠ 8, after searching the matrix 𝑀 in radius
1, we will find the element 𝑀[4][3] which has a value of 8. Thus, the
stego-pixels are equal to 4 and 3.

The data extraction procedure of the FEMD scheme is fairly straight
forward. Knowing the parameter 𝑆, calculate function 𝐹 for each of
the stego-image’s blocks and then convert its result to binary. One
of the advantages of the FEMD method is its ability to embed more
than 1 bpp in the cover image, and this capability is controlled by the
parameter 𝑆. Bigger 𝑆 increases the search radius and the amount of
pixels modification, hence more data can be embedded in the cover
image.

4.2.2. Benefits of embedding in the edges
Our steganographic scheme combines the FEMD method with a

simple edge detection algorithm because embedding in the edges of an
image has some significant advantages:

I. Embedding in the edges reduces the visual distortion of stego-
images. Since the pixel values of the edges are more diverse
compared to the smooth regions, the human visual system is

less sensitive towards changes in them [32]. This decrease in the
distortion is not detectable by a general criterion like PSNR, but a
criterion such as SSIM which considers the characteristics of the
human visual system can detect this distortion reduction very
well.

II. Embedding in the edges increases the resistance of stego-images
against steganalysis techniques, because:

• In natural images, the LSB of the edge pixels is random and
noise-like, but the LSB plane of the smooth regions is not
always random, and in some cases, they even contain some
textural information about the image. Therefore embedding
in these areas will make the LSB planes more and more
random, which may lead to visual artifacts and statistical
differences between the cover image and its corresponding
stego-image [32].

• The edge information of an image is highly dependent on
its content, hence the embedding position for each image is
different from the other ones, and this makes detecting the
stego-images even harder.

Furthermore, because the size of the generated shadows are rela-
tively large and the cover images usually have a small number of edges,
we need an algorithm that can embed more than 1 bit per pixel. Hence
we chose the FEMD method because it can embed 1 to 4.5 bpp and
achieves better visual quality compared to the LSB substitution method.

4.2.3. The proposed steganography method
In the proposed scheme, similar to the FEMD method, we partition

the cover image into non-overlapping blocks of two pixels, and then
choose a positive integer as the threshold value. In each block, if
the absolute difference of the pixels was greater than or equal to the
threshold value, that block is considered an edge block and the secret
data will be embedded in it using the FEMD method. Otherwise, the
block is ignored, and no embedding will be done in it.

The threshold value determines the number of pixels detected as
edges. The higher the threshold value, the more pixels that will be
detected as edges. Fig. 6 shows the edges of image (1a) for different
threshold values.

In this method, the data is only embedded in the edge blocks, but
after the embedding process, the absolute difference of the block’s pixels
may change and become less than the threshold value. In this case, the
search radius of the FEMD method is increased by 𝑜𝑛𝑒, and the search
process is repeated to find an element equal to the secret data where the
difference of its pixels is not less than the threshold.
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Fig. 6. Edges of ‘‘Camera Man’’ image for different thresholds.

In some circumstances, more than one element with such properties
can be found, therefore to achieve the best possible quality, the element
with the minimum difference from the original pixels is chosen. This way
we can ensure that the chosen element produces minimum distortion in
the cover image.

For example, see Fig. 5 and assume that the threshold value is equal
to 3 and we want to embed data 5 in pixels (5, 2). The resulted stego-
pixels will be (4, 2) and their difference is less than 3, so we increase the
search radius by one and repeat the search process. The result is pixels
(7, 0) and (7, 3). Now in order to find the pixel with minimum distortion,
we should calculate their difference from the original pixels:

𝐷1 = |7 − 5| + |0 − 2| = 4

𝐷2 = |7 − 5| + |3 − 2| = 3

Therefore, the pixels (7, 3) are chosen as the resulted stego-pixels.
In a natural image, the number of pixels that suffer from this problem

is very low, so an increase in the search radius does not cause much
distortion in the image.

The proposed steganography method consists of the following steps:

1. Take a two-pixel block (𝑝1, 𝑝2) as input.
2. If the |𝑝1 − 𝑝2| >= 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, go to step 3, otherwise ignore this

block.
3. Embed the secret bits in the block using FEMD method. The result

pixels are (𝑝′1, 𝑝
′
2).

4. If the result |𝑝′1 − 𝑝′2| < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, increase the search radius by 1
and repeat step 3. However, this time ignore all of the previous
results.

5. Repeat step 4 until |𝑝′1 − 𝑝′2| >= 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑.
6. Return the pixels (𝑝′1, 𝑝

′
2) as the stego-block.

As it was stated before, our scheme can use different thresholds and
based on parameter 𝑆, various embedding capacities. Hence, before the
embedding process, and based on the size of the secret message, the
values of threshold and 𝑆 should be chosen in such a way that the
embedding process causes minimum distortion to the stego-image.

The following procedure determines the best values for threshold
and 𝑆 based on the size of the secret message:

1. Initially, an acceptable range for 𝑆 and the threshold is deter-
mined, for example 𝑆 = [2, 8] and 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = [2, 30]

2. Starting from the smallest 𝑆 and the biggest threshold, estimate
the embedding capacity of the whole image. If this capacity is less
than the secret message’s size, decrease the threshold by one and
repeat the process until reaching the lowest acceptable value for

the threshold, then if the capacity was still less than the secret
message’s size, increase 𝑆 and set the threshold to its biggest
value and start over. Repeat this process until the biggest possible
𝑆 is reached. Then if the capacity is still less than the secret’s size,
the message is too large for this image and cannot be embedded
in it.

Finally, using the determined values for threshold and 𝑆, the data
embedding process consists of these steps:

1. Partition the cover image into non-overlapping two-pixel blocks.
2. Convert the shadow image into a binary string (secret message)

and then partition it into blocks of length ⌊𝐿𝑜𝑔2𝑆2⌋.
3. Ignore the first 5 blocks of the cover image and starting from the

6th block, read the blocks one by one and if the difference of their
pixels is more than the threshold, embed the first unprocessed
block of the secret message in it using the FEMD method.

4. Repeat step 3 until all of the secret message blocks are embedded
in the cover image.

5. In the end, embed the threshold value and 𝑆 in the first 5 blocks
using simple FEMD with 𝑆 = 2 and without edge detection.

Fig. 7 depicts the data embedding process.
In the steganography phase of our scheme, each participant’s shadow

is converted to a bit string, and then it is embedded in a cover image
using the proposed steganography method.

Finally, Fig. 8 illustrates the whole workflow of the proposed
method.

5. Security analysis of the proposed scheme

In this section, we use a formal method similar to [33] to investigate
the security of our scheme. We prove that the proposed secret image
sharing scheme is secure and the confidentiality of the secret image
is guaranteed as long as the random oracles of OAEP produce pseudo-
random strings in such a way that a computationally bounded adversary
cannot distinguish them from entirely random strings.

In this analysis, we suppose that the adversary is in the best possible
condition, he has access to 𝑡 − 1 shadows, the generator matrix of the
IDA, and the values of 𝑛 and 𝑡 are public, and he has access to them. Also,
we assume that with access to one shadow, the adversary can learn the
size of the secret image. For example, if the size of a shadow is 𝛾 bits,
the adversary can infer that the secret image’s size is 𝐿 = 𝛾 × 𝑡 bits.

First, we use a Lemma from [34] to show that if an adversary has
𝑡 − 1 shadows of size 𝛾, there are 2𝛾 candidates for the secret. This
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Fig. 7. The data embedding process.

Fig. 8. The workflow of the proposed method.

Lemma does not imply how difficult it would be to find out which of
these candidates is the right one. It just shows that there are these many
different candidates. For the proof of this Lemma please refer to [34].

Lemma 1. Assume that the secret image 𝑆 contains 𝐿 elements, and each
element is a member of the finite field F (𝑆 = 𝑠1, 𝑠2,… , 𝑠𝐿 ; 𝑠𝑖 ∈ F), and
the IDA divides 𝑆 into 𝑛 shadows of size 𝛾. Given t-1 shadows, there are 2𝛾
candidates for 𝑠1, 𝑠2,… , 𝑠𝐿 [34].

It is important to signify here that the large number of possible
candidates cannot guarantee the scheme’s security. As described in
Section 3, if a secret image is shared using only an IDA, the adversary
can learn vast amounts of information about the secret image without
having access to 𝑡 shadows.

However, in our scheme, the secret values 𝑠1, 𝑠2,… , 𝑠𝐿 are not shared
directly and they only act as inputs of the random oracle. Therefore
when there are 2𝛾 possible candidates for them – if 𝛾 is large enough –,
the process of guessing the correct input for the random oracle becomes
infeasible.

For example in OAEP, since the output of oracle 𝐺 is random if an
adversary has access to all but 𝛾 bits of 𝑥′ (𝛾 ≥ 𝜆), every one of the
possible 2𝛾 candidates has an equal probability of being the correct input
of oracle 𝐻 . Now when 𝛾 is large enough and the adversary has limited
computational power and bounded number of queries to oracle 𝐻 , his
chance to guess the right input for oracle 𝐻 and thus to find the random
value 𝑟 and the initial secret input is negligible.

Now based on these discussions, we analyze the security of the
proposed secret image sharing scheme using a modified version of
Bellare and Rogaway’s method [33]. Therefore, first, we briefly describe
their approach in the next part.

Fig. 9. Share and recover procedures of a secret sharing scheme using generalized OAEP.

5.1. Bellare and Rogaway’s method

Bellare and Rogaway’s method uses indistinguishability to investi-
gate the security of computational secret sharing schemes which use
encryption to provide confidentiality for the secret data. Their approach
uses two games to reduce the security of the secret sharing scheme to
the security of its constructor encryption algorithm. These games are
played between an adversary and a challenger.

The Ind game analyzes the indistinguishability of the encryption
algorithm. This game consists of the following steps:

1. The challenger picks a bit 𝑏 ∈ {0, 1} randomly and generates a
random key 𝐾

$
←←←←←←← {0, 1}𝜆

2. The adversary chooses two equal sized secret messages 𝑆0 and 𝑆1
and passes them to the challenger.

3. The challenger picks 𝑆𝑏, encrypts it using 𝐾, and passes the
cipher-text to the adversary.
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Table 1
Notations.

Sign Description

⊕ Bitwise XOR
H,G Random oracles
∥ Concatenating two strings
𝐕 Vector V
𝑉 [𝑖] 𝑖th element of vector V
← Deterministic output
$
←←←←←← Nondeterministic output
{0, 1}𝜆 Binary string of length 𝜆

4. The adversary guesses which of the secret messages were en-
crypted. The adversary wins if he can guess 𝑏 correctly.

The second game Priv, uses the same approach to analyze the
indistinguishability of the secret sharing scheme. In this game, the
adversary should distinguish between two distinct secret values while
having utmost 𝑡 − 1 shares. The steps of this game are as follows:

1. The adversary chooses two equal sized secret messages 𝑆0 and 𝑆1
and passes them to the challenger.

2. The challenger picks a bit 𝑏 ∈ {0, 1} at random, shares 𝑆𝑏 using
the secret sharing algorithm, and generates share vector 𝐒.

3. The adversary can ask the challenger for the 𝑖th share and receive
𝐒[𝑖] in return. This process can be repeated 𝑡− 1 times, hence the
adversary can get utmost 𝑡 − 1 shares.

4. The adversary should guess which of the secret messages were
shared, and adversary wins if he can guess 𝑏 correctly.

Based on these games, the following definitions are made:

• 𝐴𝑑𝑣𝑃𝑟𝑖𝑣𝛱 (𝐴): the advantage of adversary A playing the game 𝑃𝑟𝑖𝑣
against the secret sharing scheme 𝛱 .

• 𝐴𝑑𝑣𝐼𝑛𝑑𝛺 (𝐵): the advantage of adversary B playing the game 𝐼𝑛𝑑
against the encryption algorithm 𝛺.

For any computationally bounded adversary, the secret sharing
scheme 𝛱 and the encryption algorithm 𝛺 are secure in terms of indis-
tinguishability, if 𝐴𝑑𝑣𝑃𝑟𝑖𝑣𝛱 (𝐴) and 𝐴𝑑𝑣𝐼𝑛𝑑𝛺 (𝐵) are negligible, respectively.

Bellare and Rogaway’s method uses these games to prove if an
adversary can distinguish between two distinct secret values with only
𝑡 − 1 shares, the same adversary can also be used as a subroutine to
break the indistinguishability of the constructor encryption algorithm.
In other words, if the adversary 𝐴 has a significant advantage against
the secret sharing scheme 𝛱 , an adversary such as 𝐵 can use 𝐴 to break
the indistinguishability of the encryption algorithm 𝛺 with the same
advantage. For more information about their method, one can refer
to [33].

5.2. Analysis of the proposed scheme

As it was mentioned, an encryption algorithm has the property
of indistinguishability when an adversary cannot distinguish between
the cipher-texts of two distinct inputs. However, in OAEP (and any
other AONT) instead of encryption, the secret data is masked with
pseudo-random bits which were generated using a random secret key 𝐾.
Therefore in order to use the method of [33] for analyzing the security of
our scheme, we use a generalized version of the OAEP algorithm which
consists of these steps:

1. The secret data is masked with the pseudo-random bits. This
masking procedure can be defined in various ways, for example,
OAEP masks the secret data by XORing it with the output of the
random oracle 𝐺 (𝐶 ← 𝑆 ⊕𝐺(𝐾)).

2. The result of the last step is hashed using the random oracle 𝐻 ,
and its result is XORed with the random key 𝐾, this way 𝐾 is
also masked with a pseudo-random value. In this step, 𝐻 is a

Fig. 10. Games 𝐺0 and 𝐺1.

hash function and its output length is equal to the size of random
key 𝐾.

Now, using the generalized OAEP and the notations of Table 1, the
Share and Recover procedures of a secret sharing scheme are defined in
Fig. 9.

In order to analyze these types of secret sharing schemes, we must
reduce their security to the indistinguishability of the generalized OAEP,
To do so, we present the following theorem and use an approach similar
to [33] and [35] to prove it.

Theorem 1. Assume that A is a privacy adversary against the secret sharing
scheme 𝛱 and the functions 𝐻 and 𝑀𝑎𝑠𝑘 are random oracles. Then there
exists an adversary 𝐵 attacking the indistinguishability of the generalized
OAEP algorithm 𝛺 such that:

𝐴𝑑𝑣𝑃𝑟𝑖𝑣𝛱 (𝐴) = 𝐴𝑑𝑣𝐼𝑛𝑑𝛺 (𝐵)

Proof. To prove this theorem, we define the games 𝐺0 and 𝐺1 as
depicted in Fig. 10.

The advantage of adversary A against the secret sharing scheme 𝛱
is:

𝐴𝑑𝑣𝑃𝑟𝑖𝑣𝛱 = 2.𝑃 𝑟[𝐺𝐴
0 ] − 1 (5)

Where 𝑃𝑟[𝐺𝐴
0 ] is the probability of correctly guessing 𝑏 in the Finalize

procedure of 𝐺0 by 𝐴.
The only distinction between the games 𝐺0 and 𝐺1 is that in 𝐺1 the

random key 𝐾 used to mask the secret data in the 𝑀𝑎𝑠𝑘 function (the
oracle G in OAEP) is different from the key 𝐾 ′ used in 𝑃

$
←←←←←←← 𝐾 ′ ⊕𝐻(𝐶).

We claim that:

𝑃𝑟[𝐺𝐴
0 ] = 𝑃𝑟[𝐺𝐴

1 ] (6)

To justify this claim, we assume that the adversary has access to
𝑡− 1 shares and the size of each share is at least 𝜆 bits. Additionally, we
know that the outputs of 𝑀𝑎𝑠𝑘 and 𝐻 functions are pseudo-random,
and 𝐶 ∥ 𝑃 is shared using an IDA.

In the worst case scenario (when the size of each share is precisely 𝜆
bits) the maximum amount of information that an adversary can learn
constitutes of one of the following cases [35]:

1. The adversary learns no information about 𝑃 but he can learn all
of 𝐶, hence from the adversary’s perspective 𝐻(𝐶) = 𝐾 ⊕ 𝑃 =
𝐾 ′ ⊕ 𝑃 ′ where 𝑃 ≠ 𝑃 ′ and 𝐾 ≠ 𝐾 ′ are random and unknown
strings.

2. The adversary learns all of 𝑃 but does not know at least 𝜆 bits
of 𝐶, and because he is a computationally bounded adversary,
based on Lemma 1 it is computationally infeasible for him to learn
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𝐻(𝐶). Therefore from his perspective 𝑃 = 𝐾⊕𝐻(𝐶) = 𝐾 ′⊕𝐻(𝐶)′

where 𝐻(𝐶) ≠ 𝐻(𝐶)′ and 𝐾 ≠ 𝐾 ′ are random and unknown
strings.

In both cases, the adversary knows one of either 𝐶 or 𝑃 and does
not know anything about the other, therefore he cannot learn any thing
about the random key 𝐾. From his perspective, the value that he knows
is always equal to the result of XORing two unknown and random
strings, thus changing one of these values (in this case 𝐾) does not
affect his winning chance. This means that a computationally bounded
adversary cannot distinguish between 𝐾 and any other random string
(𝐾 ′), hence (6) holds true [35].

Next, we construct the adversary 𝐵 attacking the indistinguishability
of the generalized OAEP algorithm 𝛺 in such a way that his advantage
will be:

𝐴𝑑𝑣𝐼𝑛𝑑𝛺 (𝐵) = 2.𝑃 𝑟[𝐺𝐴
1 ] − 1 (7)

Adversary 𝐵 can achieve this advantage by running 𝐴 as a subrou-
tine. The steps of such a procedure are as follows:

• Adversary 𝐵 generates the random key 𝐾 ′ $
←←←←←←← {0, 1}𝜆.

• As his challenger, adversary 𝐵 runs 𝐴, then 𝐴 executes the
procedure 𝑆ℎ𝑎𝑟𝑒(𝑆0, 𝑆1).

• Adversary 𝐵 sends 𝑆0 and 𝑆1 to his own challenger and receives
𝐶

$
←←←←←←← 𝑀𝑎𝑠𝑘𝐾 (𝑆𝑏) (𝐾 is the key generated by the challenger of 𝐵).

• Adversary 𝐵 computes 𝑃 = 𝐻(𝐶) ⊕ 𝐾 ′ and generates the shares
using an 𝐼𝐷𝐴 algorithm 𝐕 ← 𝐼𝐷𝐴(𝐶 ∥ 𝑃 ).

• When 𝐴 executes the 𝐶𝑜𝑟𝑟𝑢𝑝𝑡(𝑖) procedure, 𝐵 sends 𝑉 [𝑖] in re-
sponse.

• Finally, when 𝐴 outputs 𝑑 as his guess, 𝐵 passes it to his challenger
as his own guess. Thus, the advantage of 𝐵 is 2.𝑃 𝑟[𝑑 = 𝑏] − 1.

Therefore by combining (5), (6) and (7) we have:

𝐴𝑑𝑣𝑃𝑟𝑖𝑣𝛱 (𝐴) = 𝐴𝑑𝑣𝐼𝑛𝑑𝛺 (𝐵)

Theorem 1 proves that if an adversary such as 𝐴 can break the
indistinguishability of the proposed secret sharing scheme with a sig-
nificant advantage while having utmost 𝑡 − 1 shares, then there is also
an adversary such as 𝐵 that can break the indistinguishability of the
generalized OAEP algorithm with the same advantage without having
the key 𝐾.

However, in the generalized OAEP, the 𝑀𝑎𝑠𝑘 and 𝐻 functions are
random oracles, and one of the most important properties of such oracles
is that their output should be pseudo-random. Now, if a computationally
bounded adversary such as 𝐵 can distinguish between the masked result
of two secret values with a significant advantage without having access
to the masking key, he practically violated the pseudo-random property
of these random oracles.

In conclusion, the proposed secret image sharing scheme is secure
in terms of indistinguishability if OAEP uses a random oracle such
that an adversary with limited computational power cannot distinguish
between its pseudo-random output and an entirely random string. In other
words, as long as the pseudo-random property of the random oracles of
OAEP is guaranteed, the security of the proposed scheme can also be
ensured.

6. Experimental results

In this section, we will present some experimental results to demon-
strate the effectiveness of our ‘‘secret image sharing with steganogra-
phy’’ method.

Fig. 11. Experimental results: (a) OAEP transformed image; (c)–(e) generated shadows.

Fig. 12. Execution time for share generation.

6.1. Generated shadows

The results of our secret image sharing scheme are depicted in
Fig. 11. In this experiment, a (2, 3)-threshold secret image sharing
scheme is applied to a 512 × 512 secret image (1a). For implementing
the OAEP transform, we used SHA-256 as the 𝐻 function and MGF1
as the 𝐺 function, and 𝜆 is 256 bits, The results of this transform are
depicted in Fig. 11a, and generated shadows are illustrated in Figs. 11b
to 11d.

As it is evident from Fig. 11, the size of each shadow is roughly 1
𝑡

of the secret image’s. Also, shadows are noise-like pictures and they do
not have any similarities to the secret image.

6.2. Performance

In this part, we are going to compare the performance of the
systematic Reed–Solomon based IDA [26,29] of our scheme with the
modified Shamir’s scheme of PBSIS methods [4–13].

For this experiment, both the PBSIS scheme and the systematic IDA
were implemented in Python 2.7, and a computer running Linux with
2.6 GHz CPU and 8 GB RAM was used to execute the code. Also, in both
methods, computations were performed in 𝐺𝐹 (28).

In this experiment, 𝑛 (the number of participants) is fixed at 30 and
the threshold value 𝑡 is increased from 4 to 30. The average ‘‘Share
Generation’’ and ‘‘Image Reconstruction’’ execution time for fifteen
256 × 256 pictures from USC-SIPI Image Database1 are illustrated in
Figs. 12 and 13, respectively.

As it is evident, the systematic IDA is much faster than PBSIS
schemes. There are two main reasons for this performance superiority:

1 http://sipi.usc.edu/database/.
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Fig. 13. Execution time for image reconstruction.

1. The computational complexity of the Lagrange interpolation
algorithm is 𝑂(𝑡 𝑙𝑜𝑔2𝑡) [19], and Shamir’s scheme has to execute
this algorithm every time it wants to reconstruct a polynomial.
In a secret image sharing scheme, there is a different polynomial
for each 𝑡 pixels, therefore this algorithm has to be executed
|𝑆𝑒𝑐𝑟𝑒𝑡𝑆𝑖𝑧𝑒|

𝑡 times during the secret reconstruction process. On the
other hand, in a systematic IDA, the generator matrix is constant
for all of the data vectors, thus the process of calculating the
inverse matrix with 𝑂(𝑡3) complexity is performed only once, and
then each of the share vectors are only multiplied by this inverted
matrix and the multiplication procedure is a lot faster than the
Lagrange interpolation.

2. In a systematic IDA, if any of the first 𝑡 shares are available during
reconstruction, their corresponding block in the initial data is also
available without any calculation.

6.3. Steganalysis

We use the SPAM steganalysis method [36] to measure the resistance
of our proposed scheme against steganalysis. For this experiment, we
used 3000 pictures from the BOSS Image Database.2

For LSB substitution, LSBMR [37], FEMD and Edge-FEMD (proposed)
steganographic methods, some random messages which created 1.0 bpp
capacity were embedded in 1500 randomly selected pictures. Then, half
of these 3000 images were used to train the SVM classifier and the other
half were used for the test. In this experiment we used a SVM classifier
with RBF kernel, so it was necessary to choose the best 𝐶 and 𝛾 values for
this kernel before the test, therefore, we used cross-validation to select
the best 𝐶 and 𝛾 from the following values:

𝐶 = 0.001, 0.01, 0.1,… , 10000

𝛾 = 0.0001, 0.001, 0.01,… , 100

The ROC curve of this experiment is depicted in Fig. 14.
As it is evident from Fig. 14, our method shows better resistance

against steganalysis. Also, it is obvious that the SPAM method can
detect LSB substitution with approximately 100 percent accuracy. This is
particularly important because most of the previous schemes [6,8,9,12,
13,18,20,21] are using LSB substitution for their steganography phase.

2 http://agents.fel.cvut.cz/boss/.

Fig. 14. ROC curve for 1.0 bpp capacity.

Table 2
Visual quality comparison.

Scheme PSNR (dB) Scheme PSNR (dB)

Lin & Tsai [20] 39.21 Yang et al. [21] 40.59
Chang et al. [6] 40.97 Wu et al. [8] 43.54
Ulutas et al. [10] 48.62 Eslami et al. [9] 48.13
Khosravi et al. [11] 43.11 Li et al. [13] 48.14

Proposed [2,30] 49.74 Proposed [0,30] 51.42

6.4. Quality comparison with the previous schemes

In this section, we are going to compare the stego-image quality
of some of the previous ‘‘secret image sharing with steganography’’
schemes with the proposed one. In this experiment, a 256 × 256
picture (1a) was used as the secret image of a (2, 4) threshold secret
image sharing scheme, and the resulting shadows were embedded in 15
different 512 × 512 grayscale cover images. Table 2 reports the average
PSNR values for our proposed method and also previous schemes.

However, in the PBSIS schemes, the size of shadows is 1
𝑡 of the

secret image’s, thus increasing 𝑡 reduces the size of shadows, and smaller
shadows result in better visual quality for stego-images. Therefore, in the
next experiment, we are going to repeat the last experiment for some of
the most important previous schemes [6,8–10,21] using different values
for 𝑡. In this experiment, the stego-image quality of these schemes for
𝑡 = 2, 3,… , 10 and 𝑛 = 10 have been compared using the PSNR and SSIM
criteria, and the results are depicted in Figs. 15 and 16, respectively.

In these experiments, we used the ranges of [0,30] and [2,30] for
threshold values. The first range results in the best possible stego-image
quality. Although, the visual quality of the second range is less than the
first one, it has better resistance against steganalysis techniques. Hence,
based on the scheme’s requirements, one of these ranges can be adopted.

As it is evident from Table 2 and Figs. 15 and 16, for both threshold
ranges, our proposed scheme has better visual quality compared to the
previous methods.

7. Conclusion

In this paper, we first demonstrated the security weaknesses of the
widely used polynomial-based secret image sharing (PBSIS) scheme.
Then we employed optimal asymmetric encryption padding (OAEP)
and information dispersal algorithms (IDA) to propose a novel compu-
tationally secure secret image sharing scheme. The proposed method
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Fig. 15. Comparing the visual quality of stego-images using PSNR criterion.

Fig. 16. Comparing the visual quality of stego-images using SSIM criterion.

enjoys the benefits of computational security and small shadow size.
Additionally, the experimental results demonstrate its computational
efficiency and confirm that the performance of the proposed scheme
is higher than PBSIS based methods.

Finally, we proposed a steganography method to embed the shadows
in the edges of cover images. Some of the most important features of
our proposed steganography scheme are higher stego-image quality and
better resistance against steganalysis algorithms.
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