
25th Iranian Conference on Electrical Engineering (ICEE 2017)

Computationally Secure Secret Image Sharing

Amir M. Ahmadian, Maryam Amirmazlaghani
Department of Computer Engineering and Information Technology,

Amirkabir University of Technology, Tehran, Iran
Email: {amir.ahmadian, mazlaghani}@aut.ac.ir

Abstract—A secret image sharing scheme is used to protect the
confidentiality of important images and also to safeguard them
against single point of failure. the first proposed secret image
sharing scheme used a technique to reduce the size of shares
to 1

t
of the secret, the benefits of small share size drawn the

attention of many researchers to that technique and it was used
in many of the later studies. In this paper we first show that this
technique has some serious security weaknesses, then in order to
overcome these drawbacks and achieve computational security,
we use All-or-Nothing transformation before share generation
process. Also, we use an Information Dispersal Algorithm instead
of a secret sharing algorithm which results in better performance
in share generation and secret reconstruction. In this way, our
proposed secret image sharing scheme enjoys better performance,
computational security and small share size. Experimental results
confirm the efficiency of the proposed scheme.

I. INTRODUCTION

A (t,n) threshold secret image sharing is a method of
distributing some secret image among n participants in

such a way that only if t or more different participants pool
their shares together they can reconstruct the original secret
image, while providing any less than t shares reveals no useful
information about it.

Alongside Image Encryption and Steganography, Secret
Image Sharing is another way of providing confidentiality for
secret images. When using image encryption if something
happens to the encrypted image or its encryption key (for
example it becomes corrupted or destroyed during storage
or transmission) the whole secret is lost. The same prob-
lem is applicable to steganography, if the stego-image or its
embedding key becomes corrupted or gets destroyed in most
cases the embedded secret is lost, but in secret image sharing
the secret is distributed among some participants, so as long
as t participants (shares) remain available it is possible to
reconstruct the original secret image.

The fact that having less than t shares should provide no
useful information about the secret is called Perfectness, in a
threshold secret sharing scheme perfectness should be provided
by one of the following security guarantees:

• Information Theoretic Security: which means that
even if the attacker has unlimited computational
power, it is still impossible for him to learn any
information about the secret.

• Computational Security : the security is guaranteed
based on some assumptions about attacker’s com-
putational capabilities and some computational hard-
ness assumptions (e.g. Discrete Logarithm, Factoriza-
tion, etc.). Almost all of the well-known encryption
schemes (i.g. AES, RSA, etc.) fall into this category.

Several threshold secret image sharing schemes have been
proposed in the last decade. Although some of them [1] use
Blakley’s secret sharing method [2], Cellular Automata [3], [4]
or Chinese Reminder Theorem (CRT) [5] as the basis for their
schemes, most of them [6–14] used Shamir’s secret sharing
scheme [15] because of its popularity and information theoretic
security.

The Blakley’s and CRT based approaches have not been
very popular because of their computational complexity and
the fact that in those methods the size of each share is as large
as the secret image and these problems makes them impractical
in case of very large secret images. On the other hand the
Cellular Automata based schemes have linear computational
complexity that is ideal for secret image sharing, but they also
suffer from a major drawback which makes them unuseful for
real world applications, only t consecutive shares are able to
reconstruct the secret.

Therefore, most of the proposed secret image sharing
schemes used Shamir’s scheme as the base of their methods,
but as we will see later in this paper, most of them suffer from a
security issue that not only shatters their information theoretic
security, but also makes them computationally insecure as well.
In this paper, after demonstrating the security weaknesses of
previous schemes, we’re going to propose our computationally
secure (t,n)-threshold secret image sharing scheme, that uses
an All-or-Nothing [16], [17] based transform to achieve com-
putational security and a computationally efficient Information
Dispersal Algorithm [17–20] to generate the shares of each
participant.

The remaining of this paper is organized as follows, in
Section 2 we provide an overview of existing secret image
sharing schemes and their strengths and weaknesses, our pro-
posed computationally secure scheme is presented in Section
3, the experimental results are given in Section 4, and finally
the conclusions are drawn in Section 5.

II. RELATED WORKS

In this section, we are going to provide an overview of the
secret image sharing schemes based on Shamir’s approach. So,
first we are going to briefly introduce Shamir’s secret sharing
scheme, and then explain the secret image sharing schemes
which were based on it.

A. Shamir’s Scheme for (t,n) Threshold Secret Sharing

In 1979, Shamir [15] proposed a polynomial based
(t,n) threshold secret sharing scheme. This scheme divides the
secret data S into n shares S1, S2, ..., Sn in such a way that
if t (t ≤ n) shares are present, secret S can be recovered

IEEE 2017 c©$31.00/978-1-5090-5963-8/17

25th Iranian Conference on Electrical Engineering (ICEE 2017)

using Lagrange polynomial interpolation. But if less than t
shares are present, no information about S can be learned. In
order to share the secret S among n participants, a random
polynomial f(x) of degree t− 1 is generated:

f(x) = a0 + a1x+ a2x
2 + ...+ at−1x

t−1 mod p (1)

In equation (1) p is a prime number bigger than both S
and n, a0 = S and ai (i = 1, 2, ..., t − 1) are random
numbers chosen uniformly from [0, p−1]. Each participant i is
assigned a unique identifier xi, and the share of ith participant
is calculated as Si = f(xi) mod p.

The share of each participant is then given to him via a
secure channel. As it is obvious the size of each share Si is
equal to the size of the secret itself, hence Shamir’s scheme is
an ideal secret sharing scheme [15], [21].

In order to reconstruct the secret, having t or more shares
(i.e. f(xi) and their corresponding identifiers xi), the t − 1
degree polynomial can be reconstructed using Lagrange poly-
nomial interpolation and after reconstructing the polynomial,
the secret value S can be obtained as S = f(0) mod p

Shamir’s secret sharing scheme is information theoretic
secure, this means that t− 1 or fewer participants can’t learn
any information about the secret [21].

B. Secret Image Sharing

Using Shamir’s secret sharing scheme, in 2002, Thien
and Lin [13] proposed the first secret image sharing scheme
(abbreviated as SISS). In their scheme, a grayscale image is
first permuted randomly and then it is divided into several
non-overlapping blocks each containing t pixels, then this t
pixels are used as the t coefficients a0, a1, ..., at−1 of the
polynomial (1).

The biggest achievement of their scheme was the smaller
size of shares (1t of the secret image), this was because they
didn’t used any random coefficients and all of the coefficients
in polynomial (1) were used for embedding secret pixels.
Because usually a secret image is very large, a method that
reduces the size of shadows is very appealing because when the
size of shares (which we call Shadows hereafter) are smaller,
it is easier to transmit them over a network, store them, embed
them in a cover media using steganography, etc. For this
reason most of the secret image sharing schemes that were
proposed later [6–12], [14] continued to use this approach in
their schemes.

But using all the coefficients in polynomial (1) for sharing
secret pixels, weakens the security of the scheme, it is no
longer information theoretic secure [21] and also in some cases
the shadows will leak key elements of secret image. In the next
section we are going to describe this problem in details.

C. Information Leakage Problem in SISS

Most of the time in an image the neighboring pixels are
highly correlated, so if we use the SISS method to share a
secret images, some of the regions in the resulted shadows are
similar to the secret image, hence revealing key elements of
the secret image.

Fig. 1: Lena Fig. 2: AUT Logo

To demonstration this security issue, we use a (2,4)-
threshold SISS scheme to share the natural image (1), the
resulted shadows are presented in Figure (3). As it is obvious,
key elements of the secret image such as its edges are
completely visible. But when the secret is a Textural image,
such as a logo, the result is much worse and almost all the
elements of secret image is visible in the shadows[21]. For
example the shadows of a (2,4)-threshold SISS scheme for
textural image (2) is depicted in Figure (4).

Fig. 3: Shadows Generated from Image (1)

Fig. 4: Shadows Generated from Image (2)

So the SISS on itself cannot provide confidentiality for the
secret image, and this issue was known from the beginning, to
solve this problem it was suggested [13] to apply a permutation
to the secret image before the share generation process. For
example if we apply Arnold Transformation to the secret
image (2) for 25 iterations and then share it via SISS method,
the resulted shadows (illustrated in Figure (5)) won’t leak any
information about the original secret.

Fig. 5: Shadows Generated from Figure (2) after Arnold
Transformation

But unfortunately this solution also cannot guarantee secu-
rity completely. For example if participant 1 is dishonest and
knows the permutation key, in order to learn some information
about the secret [14], he can:

25th Iranian Conference on Electrical Engineering (ICEE 2017)

1) Copy his shadow image.
2) Disguise this copied shadow as shadow 2.
3) Gives his shadow and fake shadow 2 to dealer to

reconstruct the secret.
4) Apply reverse of permutation to reconstructed secret.

We apply this process to the shadows of figure (5), the
result is depicted in figure (6) and it is clearly visible that
the resulted image contains some elements of original secret
image.

Fig. 6: Reversed Permutation Fig. 7: AONT Result

Also it was proven that a Permutation-Only image encryp-
tion scheme is not secure against chosen plaintext attacks [22].
So a secret image sharing scheme that relies on permutation-
only image encryption for confidentiality -in the sense of
indistinguishability- is not secure.

One way of dealing with this security issue is to use
Shamir’s scheme without any change [23], this means that
every single pixel of the secret image will be embedded in
the first coefficient of the polynomial (1) and the rest of the
coefficients are random numbers. This approach guarantees
information theoretic security but the size of its shadows is
equal to the size of secret image and in some cases the
large size of shadows is not acceptable, unfortunately it was
proven [24] that the size of shadows in an information theoretic
secure secret sharing scheme can’t be smaller than the size
of the secret itself. On the other hand it is known that a
computationally secure secret sharing scheme can reduce the
size of shadows to 1

t while guaranteeing the scheme’s security
in face of attackers with limited computational capability [25].

Besides, information theoretic security in practical scenar-
ios isn’t very useful, because as we mentioned before, the
shadows should be transmitted to participants via a secure
channel and most of the time the security of this channel is
provided with a computationally secure encryption algorithm
such as AES [25].

In this paper, our goal is to keep the advantage of previ-
ously mentioned SISS, which was its small shadow size while
overcoming its security issues. Due to the above explanations,
it is obvious that in SISS approaches, the confidentiality was
not provided by Shamir’s scheme but with a permutation
before it. So, the role of Shamir’s scheme was reduced to
distributing the output of permutation layer among the partic-
ipants. In this paper, we use the same two layered approach,
but by utilizing the methods described in [17], instead of
permutation we apply a modified AONT transformation to
secret image in order to guarantee its security. Then, for share

generation instead of Shamir’s scheme, we use an Information
Dispersal Algorithm.

III. THE PROPOSED SCHEME

The biggest security drawback of the SISS method is
that the permutation applied to the secret image before share
generation can not provide computational security. So, to
overcome this drawback, we replace this permutation with a
modified All-or-Nothing transformation.

Our Computationally Secure Secret Image Sharing Scheme
consists of these two steps:

1) A security transform, which is a slightly modified
version of Rivest’s All-or-Nothing Transform [16].

2) An Information Dispersal Algorithm which is based
on systematic Reed-Solomon coding and is used
to generate n shadows from the output of security
layer [19], [20].

In the next sections, we describe each of these steps
individually and then combine them in such a way that the
result will become a computationally secure secret image
sharing scheme.

A. Security Layer : SI-AONT

In this step of the algorithm, as a preprocess we ap-
ply a modified version of Rivest’s All-or-Nothing Transform
(AONT) [16] to the secret image. The AONT can be viewed
as a (n+1,n+1)-threshold scheme, the data is encoded into n+1
blocks in such a way that none of the original blocks can be
decoded unless all of the n+1 encoded blocks are present.

In the original AONT [16] the data is first partitioned into
n blocks d0, d1, ..., dn−1, and a random key k is generated,
then each block is encoded using the following formula:

ci = di ⊕ Ek(i+ 1) for i = 0, 1, ..., n− 1

where E is a symmetric encryption algorithm that it’s output
length is at least as long as the size of each block. Finally the
n+ 1th block is calculated as follows:

cn = k ⊕ h0 ⊕ h1 ⊕ ...⊕ hn−1

where

hi = Ek0
(ci ⊕ i) for i = 0, 1, ..., n− 1

where k0 is a fixed, publicly-known encryption key. [16], [17]

The AONT has computational security which means that in
order to decode the blocks, an attacker should either possesses
all of the n + 1 blocks or be able to guess k, and if the
length of k is large enough the process of guessing it becomes
computationally infeasible.

Originally AONT was proposed as an encryption mode, so
the result of it would have been encrypted afterwards, but in
secret sharing this is not the case.

In order to be able to guarantee schemes security we should
restrict the size and the number of blocks, so we slightly
modify the original AONT in order to make it more applicable
to secret image sharing:

25th Iranian Conference on Electrical Engineering (ICEE 2017)

1) Generate a Random key k.
2) Partition the secret image into exactly t equally sized

blocks B1, B2, ..., Bt. (add padding if needed)
3) Using k, generate t (different) random masks

R1, R2, ..., Rt, the size of Ris should be equal to the
size of blocks. (this masks can be generated using any
pseudo-random bit generator or even an encryption
scheme)

4) Transform each of blocks using equation (2):

Di = Bi ⊕Ri for i = 1, 2, ..., t (2)

5) Compute h as follows:

h = Hash(D1 ⊕D2 ⊕ ...⊕Dt) (3)

The hash function of equation (3) should be a secure
cryptographic hash function and its output length
must be equal to the length of k. For example if k
is a 256 bit key, we should use a hash function with
output of 256 bits (e.g. SHA-256).

6) Compute P = h ⊕ k, we can publish P publicly or
share it among the participants using an IDA.

This modified version (which we call SI-AONT henceforth)
restricts the number of blocks to t, this is because we have to
guarantee that even if t − 1 participants pool their shares to-
gether, still one block will remain missing, and since guessing
this last block should be infeasible, the size of blocks must be
large enough (at least 256 bits). The result of SI-AONT is a
noise like image that reveals no information about the secret
image. For example the transformed version of figure (2) is
depicted in figure (7).

This transformation on itself provides no security because
by knowing all the transformed blocks one can easily recon-
struct the original secret image. To achieve security, each of
image blocks should be dispersed among n participants in such
a way that if t − 1 participants try to reconstruct the data, a
complete block remains missing. Next we first introduce the
Information Dispersal Algorithms and then discuss how to dis-
perse transformed image to meet the mentioned requirement.

B. Information Dispersal Algorithm

For the dispersal algorithm, we use the IDA proposed
in [17], [19] which is based on the well known Reed-Solomon
codes. Every information dispersal algorithm can be illustrated
as a matrix-vector product [17]. A n× t generator matrix G is
multiplied by a data vector D of length t and the result will
be stored in the vector R of length n.



g1,1 g1,2 . . . g1,t
g2,1 g2,2 . . . g2,t
g3,1 g3,2 . . . g3,t
g4,1 g4,2 . . . g4,t

...
...

. . .
...

gn,1 gn,2 . . . gn,t

×

d1
d2
...
dt

 =



r1
r2
r3
r4
...
rn


The size of every element in matrix G and vectors D and R

is 8 bits, we consider this size because this way each pixel can
be stored in one element and also all arithmetic operations can
be in GF (28), which is easy to perform and implement [19].

The generator matrix G should be constructed in such a
way that all combinations of t rows of it result in an invertible
matrix. In this way the rows of the corresponding matrix for
every t element of vector R, result in a t× t invertible matrix.
We call the inverted matrix G′, and t available elements of R
multiplied by G′ will result in vector D, so every t elements
of R can reconstruct the data vector D. An example of such
matrix is the Vandermonde matrix. A m × n Vandermonde
matrix is generated using the following formula:

Gi,j = ij−1

For i = 1, 2, ...,m and j = 1,n. An example of a 5× 3
Vandermonde matrix in GF (28) is:

10 11 12

20 21 22

30 31 32

40 41 42

50 51 52

 =


1 1 1
1 2 4
1 3 5
1 4 16
1 5 17


Using Vandermonde matrix is an example of non-

systematic coding [18], [19], on the other hand in a Systematic
code, the first t elements of vector R are exactly the t elements
of data vector D, and the remaining n− t elements of R are
calculated as a combination of the elements of D. So the first
t rows of the generator matrix in this type of coding is a t× t
identity matrix [17], [19], [20].



1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

g1,1 g1,2 . . . g1,t
...

...
. . .

...
gn−t,1 gn−t,2 . . . gn−t,t


×


d1
d2
...
dt

 =



d1
d2
...
dt

r1
...

rn−t


the process of creating such a matrix from Vandermonde
matrix is described in [19], [20].

Using a systematic coding for information dispersal im-
proves the overall performance of the algorithm, because any
of the first t elements of R can reconstruct their corresponding
element in D without any encoding. On the other hand this
type of coding does not obfuscate the shared data and hence
is not secure, but its not a problem for our scheme because as
we mentioned earlier the security of our scheme is provided
by the SI-AONT transformation beforehand.

C. Proposed Scheme : Combining SI-AONT and IDA

In the proposed computationally secure secret image shar-
ing scheme (CS-SISS) we use the information dispersal algo-
rithm of the last section to generate the shares for each of
the participants. For achieving security the shares should be
generated in such a way that only t or more participants can
reconstruct all of the t blocks of the data. The Share generation
algorithm is as follows:

1) Apply the process of SI-AONT to the secret image,
the output of this process is a public value P and t
transformed blocks B1, B2, ..., Bt

25th Iranian Conference on Electrical Engineering (ICEE 2017)

2) Take the first (unprocessed) pixels of each of these
t blocks, b1, b2, ..., bt and create vector D, multiply
D by a systematic generator matrix G and store the
results in vector R.

3) The ith element of the vector R is a pixel for the ith
shadow.

4) Repeat steps 2 and 3 until all pixels of the blocks are
processed.

5) Send the ith shadow to participant i (via a secure
channel).

6) Publish the value P in a public directory. (or share it
among participants using steps 2 and 3)

This way of dispersing the blocks of transformed secret
image guarantees that even if t − 1 participants pull their
shadows together, still one block would be missing, so XORing
them wouldn’t result in h, and without having h the public
value P won’t leak any information about the random key
and k will remain unknown, because of that t− 1 participants
won’t be able to regenerate the Ris and hence their blocks
will remain encoded and won’t leak any information about the
secret image.
There are some security considerations about the proposed
scheme:

• The size of the key should be large enough to make
the exhaustive key search attacks infeasible. It is
suggested to use at least a 256 bit key.

• During secret reconstruction if only one of the blocks
were missing, those t−1 participants can try to guess
it, so in order to make this effort infeasible, the size
of each block should be at least 256 bit (or 32 pixels).

• Considering the above requirement, the minimum size
of secret image is 32× t pixels, if the secret image is
smaller than that, the size of the blocks will be smaller
than 32 and guessing a missing block becomes easier
for the attacker.

• Because the output of SI-AONT is randomized, the
probability of each of the 2256 possible outputs being
the correct one is the same, so theoretically, the
attacker should try 2256 different values in order to
guess the correct one.

• If the secret is a Black and White image, because the
possible values of a pixel is only 0 and 1, guessing
a block for attacker is much easier, so in order to
guarantee security, the recommended minimum block
size and minimum image size for a B&W image are
256 and 256× t pixels respectively.

IV. EXPERIMENTAL RESULTS

The experimental results of the proposed (2,4)-CS-SISS
scheme for secret images of Figures (1) and (2) can be found
in Figures (10) and (11) respectively. In these experiments the
secret image’s size is 512× 512 and the size of each shadow
image is 256 × 512. So as expected the size of each shadow
is reduced to 1

t of the original secret.

If instead of publishing the public value P , we decide to
share it among the participants using an IDA, SIZE(P)

t bits
will be added to the size of shadows. For example if the size

of key is 256 bit and we use SHA-256 as hash function, the
size of P will be 256 bit, so in a (2,4)-CS-SISS, 128 bit of
data will be added to the shares, meaning that the final size of
each shadow will be ((256× 512) + 16) pixels.

Our Proposed SI-AONT can also be used instead of per-
mutation in the traditional SISS schemes (as in [13]) to
achieve computational security, but as we mentioned earlier the
performance of information dispersal using a Systematic IDA
is much better than Shamir’s scheme. In order to show this
performance superiority we compared Reed-Solomon based
Systematic IDA [19], [20] with SISS [13] in terms of the speed
of share generation and secret reconstruction using the same
secret image (1) according to the following two experiments:

The first experiment compares the schemes using a fixed
value of n equal to 30 and a threshold t varying from 4 to
30, the result of this experiment for share generation and
secret reconstruction is illustrated in Figures (9a) and (9b)
respectively.

In the second experiment, the value of t is fixed at 6 and
the value of n is increased from 6 to 30, the result of this
comparison for share generation and secret reconstruction is
depicted in Figures (8a) and (8b) respectively.

(a) Share Generation

(b) Secret Reconstruction

Fig. 8: Performance Comparison for t = 4 and n = 6, 7, ..., 30

As it can be seen in Figures (8) and (9), while the security
is provided via SI-AONT, for the propose of information
dispersal, the Reed-Solomon based IDA has much better
performance, hence while it is still possible to use Shamir’s
Scheme as IDA, for practical purposes (specially when dealing
with large images) it is recommended to use a more optimized
IDA, such as the one introduced in the last section.

25th Iranian Conference on Electrical Engineering (ICEE 2017)

(a) Share Generation

(b) Secret Reconstruction

Fig. 9: Performance Comparison for n = 30 and t =
4, 5, ..., 30

Fig. 10: Shadows Generated from Image (1)

Fig. 11: Shadows Generated from Image (2)

V. CONCLUSION

In this paper, we first demonstrated that the extensively
used secret image sharing scheme of [13] is not secure and
described some examples of its security defects. Then we
proposed a computationally secure secret image sharing (CS-
SISS) scheme using SI-AONT and IDA which has both the
benefits of computational security and small shadow size. Our
experimental results showed that the generated shadows reveal
no information about the secret and also the performance of
proposed scheme is much better than the methods based on
Shamir’s secret sharing scheme.

REFERENCES

[1] H.-K. Tso, “Sharing secret images using blakleys concept,” Optical
Engineering, vol. 47, no. 7, pp. 077 001–077 001, 2008.

[2] G. R. Blakley, “Safeguarding cryptographic keys,” Proc. of the National
Computer Conference1979, vol. 48, pp. 313–317, 1979.

[3] Z. Eslami, S. Razzaghi, and J. Z. Ahmadabadi, “Secret image sharing
based on cellular automata and steganography,” Pattern Recognition,
vol. 43, no. 1, pp. 397–404, 2010.

[4] G. Alvarez, L. H. Encinas, and A. M. del Rey, “A multisecret sharing
scheme for color images based on cellular automata,” Information
Sciences, vol. 178, no. 22, pp. 4382–4395, 2008.

[5] S. J. Shyu and Y.-R. Chen, “Threshold secret image sharing by chinese
remainder theorem,” in Asia-Pacific Services Computing Conference,
2008. APSCC’08. IEEE. IEEE, 2008, pp. 1332–1337.

[6] C.-C. Wu, S.-J. Kao, and M.-S. Hwang, “A high quality image sharing
with steganography and adaptive authentication scheme,” Journal of
Systems and Software, vol. 84, no. 12, pp. 2196–2207, 2011.

[7] Z. Eslami and J. Z. Ahmadabadi, “Secret image sharing with
authentication-chaining and dynamic embedding,” Journal of Systems
and Software, vol. 84, no. 5, pp. 803–809, 2011.

[8] C.-C. Chang, Y.-P. Hsieh, and C.-H. Lin, “Sharing secrets in stego
images with authentication,” Pattern Recognition, vol. 41, no. 10, pp.
3130–3137, 2008.

[9] C.-C. Thien and J.-C. Lin, “An image-sharing method with user-friendly
shadow images,” IEEE Transactions on circuits and systems for video
technology, vol. 13, no. 12, pp. 1161–1169, 2003.

[10] R.-Z. Wang, Y.-F. Chien, and Y.-Y. Lin, “Scalable user-friendly image
sharing,” Journal of Visual Communication and Image Representation,
vol. 21, no. 7, pp. 751–761, 2010.

[11] R.-Z. Wang and C.-H. Su, “Secret image sharing with smaller shadow
images,” Pattern Recognition Letters, vol. 27, no. 6, pp. 551–555, 2006.

[12] Y.-S. Wu, C.-C. Thien, and J.-C. Lin, “Sharing and hiding secret images
with size constraint,” Pattern Recognition, vol. 37, no. 7, pp. 1377–1385,
2004.

[13] C.-C. Thien and J.-C. Lin, “Secret image sharing,” Computers &
Graphics, vol. 26, no. 5, pp. 765–770, 2002.

[14] J. He, W. Lan, and S. Tang, “A secure image sharing scheme with high
quality stego-images based on steganography,” Multimedia Tools and
Applications, pp. 1–22, 2016.

[15] A. Shamir, “How to share a secret,” Communications of the ACM,
vol. 22, no. 11, pp. 612–613, 1979.

[16] R. L. Rivest, “All-or-nothing encryption and the package transform,” in
International Workshop on Fast Software Encryption. Springer, 1997,
pp. 210–218.

[17] J. K. Resch and J. S. Plank, “Aont-rs: Blending security and perfor-
mance in dispersed storage systems,” in Proceedings of the 9th USENIX
Conference on File and Stroage Technologies, ser. FAST’11. USENIX
Association, 2011, pp. 14–14.

[18] M. O. Rabin, “Efficient dispersal of information for security, load
balancing, and fault tolerance,” Journal of the ACM (JACM), vol. 36,
no. 2, pp. 335–348, 1989.

[19] J. S. Plank et al., “A tutorial on reed-solomon coding for fault-tolerance
in raid-like systems,” Softw., Pract. Exper., vol. 27, no. 9, pp. 995–1012,
1997.

[20] J. S. Plank and Y. Ding, “Note: Correction to the 1997 tutorial on reed–
solomon coding,” Software: Practice and Experience, vol. 35, no. 2, pp.
189–194, 2005.

[21] T. Guo, F. Liu, C. Wu, C. Yang, W. Wang, and Y. Ren, “Threshold
secret image sharing,” in International Conference on Information and
Communications Security. Springer, 2013, pp. 404–412.

[22] A. Jolfaei, X.-W. Wu, and V. Muthukkumarasamy, “On the security
of permutation-only image encryption schemes,” IEEE Transactions on
Information Forensics and Security, vol. 11, no. 2, pp. 235–246, 2016.

[23] C.-C. Lin and W.-H. Tsai, “Secret image sharing with steganography
and authentication,” Journal of Systems and software, vol. 73, no. 3,
pp. 405–414, 2004.

[24] A. Beimel, “Secret-sharing schemes: a survey,” in International Con-
ference on Coding and Cryptology. Springer, 2011, pp. 11–46.

[25] H. Krawczyk, “Secret sharing made short,” in Annual International
Cryptology Conference. Springer, 1993, pp. 136–146.

