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Abstract—When specifying security policies for databases, it
is often natural to formulate disjunctive dependencies, where
a piece of information may depend on at most one of two
dependencies P1 or P2, but not both. A formal semantic model of
such disjunctive dependencies, the Quantale of Information, was
recently introduced by Hunt and Sands as a generalization of the
Lattice of Information. In this paper, we seek to contribute to the
understanding of disjunctive dependencies in database-backed
programs and introduce a practical framework to statically
enforce disjunctive security policies. To that end, we introduce
the Determinacy Quantale, a new query-based structure which
captures the ordering of disjunctive information in databases.
This structure can be understood as a query-based counterpart
to the Quantale of Information. Based on this structure, we design
a sound enforcement mechanism to check disjunctive policies for
database-backed programs. This mechanism is based on a type-
based analysis for a simple imperative language with database
queries, which is precise enough to accommodate a variety of row-
and column-level database policies flexibly while keeping track of
disjunctions due to control flow. We validate our mechanism by
implementing it in a tool, DIVERT, and demonstrate its feasibility
on a number of use cases.

I. INTRODUCTION

Database security and information flow security have largely
evolved as two disparate areas [1], [2], while sharing closely-
related foundations and mechanisms to enforce security. Mod-
ern applications commonly rely on shared database back-
ends to provide rich functionality to a multitude of mutually
distrusting users. In response to frontend demands, database
query languages, with features such as triggers, store pro-
cedures, and user-defined functions, have increasingly come
to resemble full-fledged programming languages, thus calling
into question the adequacy of the underlying access control
models [3], [4]. A security policy describes the totality of
expectations that we have of a computer system in the face
of adversaries that seek to satisfy objectives that may differ
from ours. In the context of database systems, whose purpose
is to retain and provide information, the security policies
of interest constrain who is allowed to learn what parts of
that information. A class of such security policies which has
proven particularly challenging to enforce with the methods
of database security are disjunctive policies, which states that
given two pieces of information, some entity may either learn
one or the other, but not both.

A common example of disjunctive policies are databases
which contain personally identifiable information, such as
medical trial data. Biometric parameters of participants are
important confounders that must be considered when drawing
conclusions from the data, but at the same time releasing

too many parameters of any one participant (such as their
height, age and weight) might be sufficient to deanonymize
them with high confidence [5]. Hence, a security policy for
such a database may specify that the user may learn height
and age, or height and weight, or age and weight, but not all
three. Other examples of scenarios where disjunctive policies
are useful include differential privacy [6] and secret sharing.

In this paper, we combine insights from database security
and information flow research to develop a formal model for
reasoning about disjunctive information in database-backed
programs, and thus take a step towards reconciling the two
fields. Our model makes it possible to reason about the
semantic information dependencies in a program that performs
queries, and compare them against a disjunctive policy. Build-
ing upon this, we propose a provably sound static enforcement
mechanism that ensure that the policy is satisfied.

It is customary in information flow models to represent
information as an equivalence relation on states, with the
refinement order of equivalence relations corresponding to
having more information. This representation can be used
for both the actual information conveyed by a computational
process and the bound imposed on it as part of a simple, non-
disjunctive security policy. The possible equivalence relations
on a given universe of states form a structure called the Lattice
of Information (LoI) [7], in which security-relevant questions
can be answered, such as whether a program reveals no more
information than is allowed by the security policy, or what
information is revealed by the combination of two programs.
Similar questions have been addressed in the database com-
munity using an analogous object called the Disclosure Lat-
tice [8]. We observe that this definition is actually insufficient
to characterize information, which motivates us to introduce
a more specific structure based on query determinacy, the
Determinacy Lattice (DL). The formal relation between the
Disclosure Lattice or our definition and LoI was hitherto
unexplored, and more importantly neither of them can be used
to represent disjunctions as seen in our motivating example.

Recently, Hunt and Sands [9] proposed a new information
flow structure called the Quantale of Information (QoI), which
seeks to address this shortcoming and establish a formal setting
for representing, combining and comparing disjunctions of
information. We build upon this work to introduce an analo-
gous structure, the Determinacy Quantale (DQ), representing
disjunctive dependencies in database-backed programs. As we
show, this structure can be formally related to the QoI, and this
relationship is analogous to that between the LoI and the DL.
We then use the DQ to design a knowledge-based security



condition that relates disjunctive dependencies in database-
backed programs to disjunctive policies.

We are the first to address the problem of enforcing dis-
junctive policies. Prior works that develop language-based
enforcement techniques in database-backed applications do not
support disjunctive policies, while database-level dependencies
are restricted to coarse approximations that incorrectly reject
secure programs, such as our previous example [10]–[14].

Perhaps unsurprisingly, path sensitivity of a static analysis
is key to capturing disjunctive dependencies. We show how
standard flow-sensitive type-based dependency analysis [15]
can be adapted to a compositional path-sensitive analysis and
thus capture disjunctive dependencies in terms of database
queries. To represent these dependencies in the DQ model, we
introduce a sound approximation of the information disclosed
by each database query which is precise enough to represent
complex combinations of both row- and column-level depen-
dencies. Finally, in the DQ, the combination of these analyses
can be proven sound with respect to our security condition. We
expect that the overall architecture of the resulting soundness
proof, in which we relate a sequence of abstractions of the
behaviour of a program to ordered elements of the DQ, can
be generalized to many other enforcement mechanisms for our
security condition.

To demonstrate the practicality of our approach, we imple-
ment this type-based dependency analysis and query approxi-
mation for database-backed programs and evaluate it on a test
suite and some use cases which effectively illustrate the need
for disjunctive dependencies and disjunctive policies.

We refer the readers to the full version of the paper [16]
for the proofs of the lemmas and theorems we present.

Summary of contributions.

• We introduce a formal model for reasoning about
disjunctive dependencies and policies in databases. In the
process, we show how to reconcile perspectives from the
database security and information flow communities.

• We introduce a database-specific model of knowledge, the
Determinacy Lattice, and a disjunctive extension, called
the Determinacy Quantale, and explore their relationship
to established general-purpose semantic models.

• Using our model, we define an extensional security con-
dition for database-backed programs that accommodates
disjunctive policies.

• We propose a type-based program analysis to capture
disjunctive dependencies in database-backed programs,
combine them with a novel abstraction of queries, and
prove them sound with respect to our security condition.
This is presented as an instance of a generalizable archi-
tecture for such soundness proofs.

• We implement a prototype tool that uses type-based
dependency analysis and query approximation to verify
query-based disjunctive policies for database-backed pro-
grams, and demonstrate its feasibility on a test suite and
a number of use cases.

The rest of paper is structured as follows. After reviewing
preliminaries in Section II, we give our account of the DL
and introduce the DQ in Section III-C. In Section IV-B, we
formalize our model of database-backed programs and the
security policies we impose on them, culminating in a formal
security condition. We present enforcement mechanisms in
Section V, and their implementation and evaluation in Sec-
tion VI. In Section VII, we contextualize our contributions
with a discussion of related work, and finally summarize
conclusions in Section VIII.

II. BACKGROUND

A. Lattice of Information

An equivalence relation ∼ ⊆ A×A on a set A is a binary re-
lation that is reflexive, symmetric, and transitive. For example,
the equivalence relation parity on the set A = {0, 1, 2, 3}
is defined as {(x, y) | x, y ∈ A ∧ x mod 2 = y mod 2}.
An equivalence relation partitions its underlying domain into
disjoint equivalence classes. Given an equivalence relation P
on a set A and a ∈ A, [a]P denotes the unique equivalence
class induced by P that a belongs to. We write [P ] to denote
the set of all equivalence classes induced by P . We call [P ]
a partition of A and hereafter we may also refer to each
element, i.e. equivalence class, of the partition [P ] as a cell.
For example, parity partitions A into cells {0, 2} and {1, 3}.

Equivalence relations over states are commonly used to
represent an agent’s knowledge, by relating two states when-
ever the agent cannot distinguish between them. When an
equivalence relation models knowledge, we also call the
cells induced by it knowledge sets. These have a distinct
intuitive interpretation when we consider functions f that
take in some state and return an agent’s view of it. We will
write the equivalence relation induced by the output of f
as ∼f= {(x, y) | f(x) = f(y)}. In that case, in a state
a, the knowledge set [a]∼f

represents the agent’s remaining
uncertainty about the state, in the sense of all the states that
the agent still considers possible, after observing the output of
f . The agent knows anything that is true in all states in the
knowledge set. In this paper, we use the terms knowledge and
information interchangeably.

A complete lattice is a set equipped with a partial ordering
(reflexive, antisymmetric, and transitive) relation, maximal
and minimal elements ⊤ and ⊥ for this relation and a join
(least upper bound) for any subset of elements. The meet
(greatest lower bound) of a subset can be defined as the join
of the set of all lower bounds of that subset [17]. The Lattice
of Information (LoI) [7] is a structure for representing the
ordering of information with equivalence relations. Let L(A)
be the set of all equivalence relations defined on a given
domain A. The LoI ranks these equivalence relations based
on the information they reveal about the underlying domain.
Given two equivalence relations P,Q ∈ L(A), this ordering
can be defined as follows:

P ⊑ Q→ ∀a, a′ ∈ A (a Q a′ ⇒ a P a′)



For any set S ⊆ L(A), the least upper bound of S is the
equivalence relation R defined as:

∀x, y ∈ A (x R y ↔ ∀P ∈ S. x P y).

Formally, LoI(A) = ⟨L(A),⊑,
⊔
⟩ denotes the LoI on do-

main A, with ordering relation ⊑ and join
⊔

. The top element
⊤ in the lattice is the most precise equivalence relation id such
that id = {(x, y) | x, y ∈ A∧x = y}, and the bottom element
⊥ is the least precise equivalence relation all = {(x, y) |
x, y ∈ A}.

The join of any two equivalence relations P⊔Q , being their
least upper bound, is the least informative equivalence relation
that is at least as informative as either of P and Q (i.e. is an
upper bound on both), and thus represents the information that
is conveyed from learning both P and Q. We refer to this as
the conjunction of the information in P and Q.

B. Quantale of Information

The LoI captures the conjunction of any two information
sources P and Q as the join of their respective equivalence
relations. However, it does not offer an operator that would
yield a representation of their disjunction, that is, the infor-
mation that can be obtained from having access to one of
them, but not both. In fact, the disjunction can not in general
be represented as a single equivalence relation, and thus an
element of the LoI, at all. To address this limitation, Hunt
and Sands [9] propose a generalization of the LoI called the
Quantale of Information (QoI). A quantale is a complete lattice
with an additional binary “tensor” operator ⊗. In the QoI, the
tensor is used to represent conjunction, while the lattice join
represents disjunction.

The core idea behind the quantale structure is to interpret
the disjunction P1∨ . . .∨Pn of several knowledge relations as
describing all knowledge relations R in which the knowledge
always comes from one of the Pi. More concretely, in any
possible state a ∈ A, the agent’s knowledge [a]R should equal
its knowledge in the same state in one of the disjuncts, [a]Pi .
Which disjunct it is may depend on the state, so the agent
may have knowledge from Pi in the state a but knowledge
from Pj in some other state a′. Relations R that satisfy this
condition are called tilings, based on a picture of covering
(since every state needs to be in some equivalence class) the
space of possible states A with knowledge sets drawn from
any of the disjuncts. Following Hunt and Sands, we define the
set of all tilings

mix(P) = {R ∈ LoI(A) | x ∈ [R]⇒ (∃P ∈ P. x ∈ [P ])},

where P is a set of equivalence relations.
We would like to think of a relation R′ as describing

no more knowledge than a disjunction
∨
P if it’s bounded

above by some R ∈ mix(P) in the LoI, and more generally
define the quantale ordering S ⊑ T for S,T ⊆ L(A) as
∀S ∈ S, ∃T ∈ T. S ⊑ T . The resulting relation is not
antisymmetric on general sets of relations or even mixes of
general sets, reflecting the circumstance that there may be
multiple mixes representing the same knowledge. As it is

1 if (x <= 0) then
2 out(-1 ,u);
3 out(x mod 2 == 0, u);
4 else
5 out(1, u);
6 out(x div 2 == 0, u);

Program 1

-2 -1
0 1
2 3

all
-2 -1
0 1
2 3

Q

-2 -1
0 1
2 3

P

-2 -1
0 1
2 3

∼prg

-2 -1
0 1
2 3

R

Fig. 1: Some equivalence relations on {−2,−1, 0, 1, 2, 3}

standard in lattice theory [18], we use the downwards closure
operator ⇓ to obtain canonical representations of the order
cycles of ⊑ and hence construct a partial order.

⇓P = {Q ∈ LoI(A) | Q ⊑ P}

The tiling closure of a set of equivalence relations P,

tc(P) = ⇓mix(P),

then canonically represents the knowledge permitted by the
disjunction

∨
P. The set tc(P) can still be interpreted as

a list of possible equivalence relations, now including any
equivalence relation that does not reveal more information than
the disjunction.

We then take the elements of the QoI on a state set A to be
all tiling closures of subsets of A, with the ordering ⊑ being
set inclusion. For the tensor P⊗Q = tc({P ⊔Q | P ∈ P, Q ∈
Q}), we rely on the join operator of the LoI ⊔ to calculate the
least upper bound of any possible pair of equivalence relations
in P and Q and then canonicalise the result. Since the sets are
interpreted disjunctively, the join

∨
i Pi can simply be defined

as tc(
⋃

i Pi).

Example 1. Program 1 operates on a secret integer x between
-2 and 3, outputting to user u whether it is greater than zero,
and either (if it isn’t) whether it is even, or (if it is) whether it
equals 0 or 1 (by dividing by 2, rounding down and testing for
0). We expect the information released by the program (∼prg

in Fig. 1) to be bounded by the disjunction of the knowledge
relations capturing the two possible branches (resp. Q, P ).

This could not be accurately expressed with LoI opera-
tions, since Q, P and ∼prg are all incomparable, but the
join of Q and P (as the only available nontrivial way of
combining them) is equal to ⊤ and so would equally bound
a program that directly releases x. However, ∼prg can be
tiled with equivalence classes from Q and P , and we in
fact have mix({Q,P}) = {Q,P,R,∼prg}. So in the QoI,
tc({∼prg}) ⊑ tc({Q,P}), and hence ∼prg ⊑ Q ∨ P .



III. INFORMATION ORDERING IN DATABASES

Our goal is to introduce our semantic model for the infor-
mation revealed by database queries, the Determinacy Lattice,
and its extension to disjunctive dependencies, the Determinacy
Quantale. To this end, we first review a standard formalism
for reasoning about databases that we will employ.

A. A Primer on Relational Database Models

We use the relational model to formally define databases
[19]. In this model, we distinguish between the database
schema D, which specifies the structure of the database, and
the database state db, which specifies its actual content.

A database schema D is a (nonempty) finite set of relation
schemas t, written as D = {t1, ..., tn}. A relation schema
(table) t is defined as a set of attributes paired with a set of
constraints, where an attribute is a name paired with a domain.
The number of attributes in t (written as |t|) is referred to as
its arity. A tuple is a set of data representing a single record
within a relation schema. Each tuple contains values for each
attribute defined in the relation schema.

A database state db is a snapshot of the database schema
D at a particular point in time. It represents the actual data
stored in the database, consisting of a collection of tables and
their respective tuples. We write JtKdb to represent the tuples
of table t under database state db.

We write states(D) to denote the set of all database states
of D. A database configuration is ⟨D,Γ⟩ where D is the
database schema and Γ is a set of integrity constraints. We
denote ΩD = {db | db ∈ states(D) ∧ ⊢ db : Γ} where ⊢ is an
appropriate notion of constraint Γ being satisfied. An integrity
constraint is an assertion about a database that must be satisfied
for a database state to be considered valid. Various classes of
integrity constraints exist, for instance functional dependencies
which capture primary-key constraints, and inclusion depen-
dencies which are used in foreign-key constraints [19].

Relational calculus. We rely on the Domain Relational
Calculus (DRC) for our query language. In the DRC, a (non-
boolean) query q over a database schema D has the form
{x | ϕ}, where x is a sequence of variables, ϕ is a first order
formula over D, and the free variables of ϕ are those in x.
The evaluation of a query q, denoted by JqKdb, is the set of
tuples that satisfy the formula ϕ with respect to db. A boolean
query is written as { | ϕ}, and its evaluation JqKdb is defined
to be the boolean value true if and only if some tuple in db
satisfies ϕ. We use Q to indicate the universe of all possible
queries.

The domain relational calculus employed here follows the
standard convention, and we refer the reader to the relevant
literature for a more comprehensive description of DRC [19].

Example 2. The database schema in Fig. 2 contains relations
for employees emp and managers mng. A query returning the
set of tuples containing the division names and the salary of
the managers of each division can be written as:

{(d, s) | ∃n, r. emp(n, r, s) ∧ ∃m. mng(d,m) ∧ n = m}.

emp : name role salary

mng : division manager

Fig. 2: Database schema for employees and managers

Views. In DRC, a database view is a relation defined by the
result of a non-boolean query. Database views act as virtual
tables and, as we will see, are useful when defining security
policies. Formally, a view v defined over database schema D is
a tuple ⟨id, q⟩, where id is the view identifier and q is the non-
boolean query over schema D defining the view. The query
q may refer to other views, but we assume that views do not
have cyclic dependencies.

The materialization of a view v in a database state db is the
evaluation of its defining query q in that state, i.e., JqKdb. We
use v.q to refer to the defining query of view v. We extend
relational calculus in the standard way to work with views [3].

B. Determinacy Lattice

Given query sets Q,Q′ ∈ P(Q), query determinacy [20]
captures whether results of the queries in Q are always
sufficient to determine the result of the queries in Q′.

Definition 1. Q determines Q′ (denoted by Q ↠ Q′) iff for
all database states db1, db2, if JqKdb1 = JqKdb2 for all q ∈ Q,
then Jq′Kdb1 = Jq′Kdb2 for all q′ ∈ Q′.

Intuitively, Q ↠ Q′ means that pairs of databases for which
all queries in Q return the same result also give the same result
under any query in Q′. This is in fact equivalent to the initial
gloss that the results of queries in Q′ can be computed from
the results of queries in Q, as we show in detail in the full
version of the paper [16].

Query determinacy allows us to define an ordering on sets
of queries based on the information they reveal. We call this
ordering determinacy order, denote it by ⪯, and define it as
∀Q,Q′ ∈ P(Q), Q ⪯ Q′ iff Q′ ↠ Q.

Example 3. Consider queries q1 = {(n, r) | ∃s. emp(n, r, s)}
and q2 = {(r) | ∃n, s. emp(n, r, s)} defined on the relations
of Fig. 2. Query q1 discloses the name and the role of the
employees while q2 only returns their role. Intuitively, q1
reveals more information than q2, which means q2 ⪯ q1.

This definition of determinacy order is a preorder (reflexive
and transitive), but not necessarily a partial order, as it is not
anti-symmetric. In other words, q1 ⪯ q2 and q2 ⪯ q1 does not
necessarily mean that q1 = q2. As in Section II-A, this essen-
tially means that query sets are not canonical representations
of the information revealed by them. To rectify this, we form
the closure ↓ under the determinacy order, so the determinacy
order becomes set inclusion. Intuitively, ↓Q will contain all
the queries in Q whose answers can be inferred by the set of
queries Q. Formally, ↓Q is defined as:

↓Q = {q ∈ Q | {q} ⪯ Q}



Using the definitions of determinacy order and closure ↓,
we can then define the Determinacy Lattice as follows:

Definition 2. Given a universe of queries Q, the Determinacy
Lattice DL(Q) is a complete lattice ⟨L,⊑,

⊔
,⊥,⊤⟩ such that:

• L = {↓Q | Q ⊆ Q}
• ↓Q1 ⊑ ↓Q2 iff Q1 ⪯ Q2

•
⊔

i ↓Qi = ↓
⋃

i Qi

• ⊥ = ↓∅, ⊤ = ↓Q,

where ⪯ is the determinacy order on Q.

Disclosure order and information flow properties. Our
definition of the Determinacy Lattice is similar to the definition
of the Disclosure Lattice introduced by Bender et al. [8]. A
Disclosure Lattice is a lattice built upon a disclosure order,
which is a partial order on sets of queries satisfying additional
conditions that are expected of an ordering according to the
amount of information disclosed by each set of queries. Bender
et al. [8] define the disclosure order as follows:

Definition 3. Given a universe of queries Q, a disclosure
order ⪯ is a preorder on P(Q) that satisfies the following
properties:

1) For all Q1, Q2 ∈ P(Q), if Q1 ⊆ Q2 then Q1 ⪯ Q2

2) If P ⊆ P(Q) and ∀P ∈ P, P ⪯ Q then
⋃
P ⪯ Q

The first property in this definition ensures that adding new
elements to a set of queries only increases the amount of dis-
closed information and the second property allows us to derive
a meaningful upper bound on the information disclosure.

The intended use of disclosure order was to order sets of
queries based on the amount of information they reveal about
the underlying database. However, we make the observation
that this definition is not specific enough to characterize
information disclosure in the information flow sense. For
example, consider query containment [19], defined as:

Definition 4. Given queries q1, q2 ∈ Q, we say that q1 is
contained in q2, denoted by q1 ⊆ q2, if for every database
states db ∈ ΩD, we have Jq1Kdb ⊆ Jq2Kdb.

Query containment satisfies all of the requirements of a
disclosure order (Def. 3), but it is not enough to guarantee
security. To illustrate this, consider a database with a single
table t given in Fig. 3.

vl

0
1

100 + s

Fig. 3: Table t

Table t has a single column vl, and contains values 0, 1,
and 100 + s, where s is a secret value that can be either 0 or
1. We thus consider two possible instances of this database,

one where t contains values 0, 1, and 100 and another where
it contains 0, 1, and 101. Now, consider the following queries:

q1 : {(vl1) | ∃vl2. t1(vl1) ∧ t2(vl2) ∧ vl1 < 100}
q2 : {(vl1) | ∃vl2. t1(vl1) ∧ t2(vl2) ∧ vl1 < 100

∧ vl1 = vl2 − 100}

where t1 and t2 are just logical copies of table t. It is common
practice to make logical copies of relation and use them in
queries with self-joins [21]. The result of query q1 is always
0 and 1. The result of query q1 is 1 if the secret s is 1 and 0
if s is 0. As it is evident, for these queries, query containment
holds and the result of query q2 is contained in the results of
q1. However, an observer seeing the result of query q2 can
learn the value of secret s.

This example illustrates that query containment (a disclo-
sure order) is not sufficient to guarantee the confidentiality
of the secret s in an information flow setting. To ensure
information flow security, we require a stronger condition,
such as the notion of query determinacy order (Def. 1) that
we chose to rely on in this paper.

Relation between the DL and the LoI. There exists a close
relationship between the DL and the LoI. Specifically, a query
q defined over a database schema D induces an equivalence
relation q∼ on database states db. We can formally define this
equivalence relation as:

q∼ = {(db1, db2) | db1, db2 ∈ ΩD ∧ JqKdb1 = JqKdb2}

We write [q∼] to denote the set of all equivalence classes
induced by q. Given an equivalence relation q∼ on set ΩD

and db ∈ ΩD, [db]q∼ denotes the equivalence class induced
by q∼ to which the database state db belongs. We further lift
this definition to sets of queries Q = {q1, q2, ..., qn}:

Q∼ = {(db1, db2) | db1, db2 ∈ ΩD

∧
1≤i≤n

JqiKdb1 = JqiKdb2}

This interpretation of database queries as equivalence re-
lations provides a direct connection between the DL and the
LoI, where the lattice elements correspond to Q∼, the ordering
⊑ to the determinacy order ⪯, and join and meet follow the
definitions of the DL.

Lemma 1. For all Q, there is a complete lattice homomor-
phism from the Determinacy Lattice DL(Q) to the Lattice of
Information defined on {Q∼ | Q ∈ DL(Q)}.

To the extent that we believe Q∼ to accurately represent the
information conveyed by the queries in Q, this lemma implies
that joins and order comparisons can be performed in the DL
without explicit reference to the LoI.

C. Determinacy Quantale

We introduce a generalization of the Determinacy Lattice,
called the Determinacy Quantale (DQ), to represent disjunc-
tive dependencies. Our definition of the DQ is intended as
a counterpart to the QoI [9], analogously to how the DL
corresponds to the LoI. To achieve this, we define a query-set



counterpart of the tiling closure operator to capture the dis-
junction of sets of queries. Since sets of queries correspond to
LoI elements (equivalence relations), disjunctive QoI elements
(sets of equivalence relations) will be represented as sets of
sets of queries. Each set of queries in the outer set represents
a possible combination of queries that does not reveal more
information than is allowed by the disjunction.

Analogously to the QoI, the tiling closure of a set of
sets of queries is defined by forming the downward closure
under ⊑ (from the DL) of their mix. The query-set equivalent
of the mix operator is defined on a set of sets of queries
Q = {Q1, ..., Qn} such that Qi ∈ DL(Q) for i = 1, ...n
as follows:

mix(Q) = {P ∈ DL(Q) | x ∈ [P∼]⇒ (∃Q ∈ Q.x ∈ [Q∼])}

where [Q∼] denotes the equivalence classes of Q as defined
previously. We then define the tiling closure for a set Q of
elements of the DL as tc(Q) = ⇓mix(Q).

We then formally define the Determinacy Quantale DQ(Q)
as follows.

Definition 5. Given a universe of queries Q, let DL(Q) be the
Determinacy Lattice defined on Q. The Determinacy Quantale
DQ(Q) is the quantale ⟨I,⊑,

∨
,⊗, 1⟩, with:

• I = {tc(Q) | Q ⊆ DL(Q)}
•

∨
i Pi = tc(

⋃
i Pi)

• P⊗Q = tc
(⋃

P∈P,Q∈Q(P ⊔Q)
)

• ⊑=⊆
• ⊤ = DL(Q), ⊥ = ∅, 1 = ∅,

where P,Q ⊆ DL(Q).

In the full version of the paper [16], we show that Def. 5
satisfies the usual quantale axioms [9]. As with the DL and
LoI, the DQ embeds into a QoI by a quantale homomorphism.
This QoI is defined on sets of equivalence relations derived
from sets of sets of queries by the following map:

Definition 6. Given a set of sets of queries Q,

JQK = {Q∼ | Q ∈ Q}.

We can then formally state the relationship between the DQ
and this quantale as follows.

Lemma 2. For all Q, there is a quantale homomorphism
from the Determinacy Quantale DQ(Q) to the Quantale of
Information defined on {JQK | Q ⊆ DL(Q)}.

Example 4. To illustrate the Determinacy Quantale in prac-
tice, consider Program 2, which issues either query q1 =
{(r, vl) | ∃s, n. emp(n, r, s) ∧ r = Intern ∧ vl = s} or
q2 = {(r, vl) | ∃s, n. emp(n, r, s) ∧ r = CEO ∧ vl = n)}
to the database. Query q1 returns the role and salary columns
of the entry in table emp if the role of that entry is Intern.
Similarly, query q2 returns the role and name columns if the
role of the entry in emp is CEO.

Consider a policy defined on queries v1 = {(r, n) |
∃s. emp(n, r, s)} and v2 = {(r, s) | ∃n. emp(n, r, s)}. v1 and
v2, which respectively project on the name and role, and the

1 if (y > 0) then
2 x ← q1
3 else
4 x ← q2
5 out(x, u);

Program 2

role and salary columns of emp, are used in defining the
disjunctive security policy v1 ∨ v2.

For this example, we assume a database that has only one
row in the emp table, and we also limit the domain of possible
roles to {CEO, Intern}. These limitations are necessary in
order to have a finite representation of the potential query sets
and enables us to effectively depict the sets produced by the
mix and tc operators.

Program 2 depicts a disjunction that – ignoring variable y –
depends either on q1 or q2 (i.e., q1∨q2), which on the DQ can
be represented as a point tc(↓{q1})∨tc(↓{q2}). Similarly, the
policy v1∨ v2 can be represented on the DQ by tc(↓{v1})∨
tc(↓{v2}).

Illustrating this point requires calculating the mix set of v1
and v2, which includes all sets of queries whose equivalence
relation can be constructed from the equivalence classes of
↓{v1}∼ and ↓{v2}∼. Unfortunately, for any sufficiently rich
query language, our definition of mix inevitably yields an
infinite set, as infinitely many queries that are “morally equiv-
alent” or even the same up to renaming variables represent
the same knowledge set. To compactly represent such infinite
sets, we will pick just one representative, and define

hc(Q) = {Q′ | ∃Q ∈ Q. Q∼ = Q′
∼}

as a closure operator that adds all equivalent queries. Then
mix

(
{↓{v1}, ↓{v2}}

)
will be the set hc({↓{v1}, ↓{v2},

↓{p1}, ↓{p2}}), where p1 = {(r, vl) |
(
∃s, n. emp(n, r, s) ∧

r = Intern∧vl = s
)
∨
(
∃s, n. emp(n, r, s)∧ r = CEO∧vl =

n
)
} and p2 = {(r, vl) |

(
∃s, n. emp(n, r, s)∧r = CEO∧vl =

s
)
∨
(
∃s, n. emp(n, r, s) ∧ r = Intern ∧ vl = n

)
}.

Therefore, we can depict the policy as the point
⇓(hc({↓{v1}, ↓{v2}, ↓{p1}, ↓{p2}})) on the DQ. Similarly,
the DQ point of the Program 2 (i.e., tc(↓{q1}) ∨ tc(↓{q2})),
can also be depicted by the point ⇓hc({↓{p1}}) on the DQ.
We illustrate the part of the DQ which includes these points
in Fig. 4, and as it is evident from the figure, conclude that
Program 2 is inline with the policy.

tc(↓{v1}) tc(↓{v2}) tc(↓{q1}) tc(↓{q2})

⇓hc({↓{p1}})

⇓hc({↓{v1}, ↓{v2}, ↓{p1}, ↓{p2}})

Fig. 4: A portion of the DQ for queries q1, q2, v1, v2



c := skip | if e then c1 else c2 |

x← q | x := e | c1; c2 |

while e do c | out(e, u)

Fig. 5: Language syntax

IV. SECURITY FRAMEWORK

Drawing on the quantale model of dependencies for pro-
grams and databases, we develop an extensional condition
that defines security for programs that interact with databases
and support disjunctive security policies. We will later use
the security condition to prove soundness of enforcement
mechanisms in Section V. Specifically, we formalize the
syntax and semantics of a simple imperative language with
database queries. Programs read the input from the database
via queries, while users receive the output through predefined
output channels. We define (disjunctive) security policies as
views over the database and interpret them end-to-end. We
then use this model to define a knowledge-based security
condition for our setting.

A. Language

Syntax. The syntax for the commands of our language as
depicted in Fig. 5, primarily consists of standard commands
such as assignment, conditionals, and loops. The command
out(e, u) outputs the result of evaluating expression e to user
u ∈ U . The command x← q issues the query q to the database
and stores the result in variable x. For modeling the queries,
we rely on conjunctive queries with comparison introduced in
Section V-A.

Expressions e can be variables x ∈ Vars, values (integers)
n ∈ Val, binary operations e1 ⊕ e2, single tuples tp ∈ Val,
and set of tuples tp ∈ Val. For simplicity, we do not provide
de-constructors for database tuples.

Semantics. As discussed in Section III-C, a database state
(or simply state) db ∈ ΩD is defined with respect to a schema
D and a finite set of integrity constraints. A configuration
⟨c,m, db⟩ consists of a command c, a memory m = Var →
Val mapping variables to values, and a state db.

The semantics of expressions is mostly standard and its
rules are presented in Fig. 6. We use judgments of the form
⟨e,m, db⟩ ↓ vl to denote that an expression e evaluates to value
vl in memory m and state db. For simplicity, we refrain from
defining binary operations on tuples, unless the underlying
database query is boolean.

We use judgments of the form ⟨c,m, db⟩ α−→ ⟨c′,m′, db′⟩ to
denote that a configuration ⟨c,m, db⟩ in one step evaluates
to memory m′ and state db′ and (possibly) produces an
observation α ∈ Obs; we write ϵ whenever a command
produces no observation. We write m[x 7→ vl] to denote a
memory m with variable x assigned the value vl.

Fig. 7 provides the semantic rules for commands. The query
evaluation rule QUERYEVAL is similar to assignment as it

evaluates a query q into state db and stores the result in the
variable x. We use the command out(e, u) to produce an
observation. Formally, an observation α ∈ Obs is a tuple
⟨o, u⟩, where u ∈ U is the identifier of the user observing the
output and o is the result of evaluating expression e, which is
either a simple value or the result set of a non-boolean query.

We write ⟨c,m, db⟩ τ
=⇒u⟨c′,m′, db′⟩ to denote when

⟨c,m, db⟩ takes one or more steps to reach configuration
⟨c′,m′, db′⟩ while producing the trace (sequence of observa-
tions) τ ∈ Obs∗. We omit the final configuration whenever it
is irrelevant and write ⟨c,m, db⟩ τ

=⇒u.

B. Security Model

We now introduce our knowledge-based security model for
disjunctive security policies. For simplicity, we denote the ini-
tial program memory by m0 and assume it is fixed and public
to all users, hence the only way to input sensitive information
is through database queries. Users make observations through
output channels, hence their knowledge of the database is
determined by what they can infer based on these observations.
This model induces standard equivalence relations for database
states and observation traces.

Database state equivalence. Two states db and db′ are equiv-
alent with respect to a set of tables and views V , written as
db ≈V db′, iff all tables and views in V have identical contents
in db and db′. Formally, states db and db′ are equivalent with
respect to V iff for all view v ∈ V, Jv.qKdb = Jv.qKdb

′
and for

all table t ∈ V, JtKdb = JtKdb
′
. A set of tables and views

V induces an equivalence relation, and for a state db, the
equivalence class [db]V contains all states that are equivalent
to db with respect to V .

Trace equivalence. We use trace projection to define trace
equivalence. The projection of a trace τ for user u written as
τ⇂u is the sequence of all observations in τ that u can observe.
Traces τ1 and τ2 are equivalent with respect to user u, written
as τ1 ≈u τ2, iff the projection of one of them to u is the prefix
of the other, i.e., τ1⇂u ⪯ τ2⇂u or τ1⇂u ⪰ τ2⇂u.

Equivalence of trace prefixes is a standard technicality
needed to ignore leaks due to program’s progress/termina-
tion [22], and here we adapt a definition of trace equivalence
which does not differentiate between program divergence and
termination [14].

User knowledge. When executing a program prg, we assume
memory is always initially in the all-zero state m0. Thus, we
can view a program’s execution for any user as a function from
database db to user-observable output traces, τprg,u(db) = τ⇂u
when ⟨prg,m0, db⟩

τ
=⇒u. This function induces an equivalence

relation on databases, JprgKu = ∼τprg,u , which characterizes
the knowledge of db conveyed by the output of prg to u.

Security policy. A security policy is a list of user policies
(written as Pu) for each user u ∈ U . User policies are defined
as views and table identifiers over a database schema, and
determine what a user u is allowed to observe. Fig. 8 presents
the syntax of disjunctive policies for our model. They are



INT
⟨n,m, db⟩ ↓ n

TUPLE
⟨tp,m, db⟩ ↓ tp

TUPLESET
⟨tp,m, db⟩ ↓ tp

VAR
vl = m(x)

⟨x,m, db⟩ ↓ vl

OP
⟨e1,m, db⟩ ↓ n1 ⟨e1,m, db⟩ ↓ n2 n = n1 ⊕ n2

⟨e1 ⊕ e2,m, db⟩ ↓ n

Fig. 6: Semantic rules for expressions

SKIP
⟨skip,m, db⟩ ϵ−→ ⟨ϵ,m, db⟩

ASSIGN
⟨e,m, db⟩ ↓ vl m′ = m[x 7→ vl]

⟨x := e,m, db⟩ ϵ−→ ⟨ϵ,m′, db⟩
QUERYEVAL

vl = JqKdb m′ = m[x 7→ vl]

⟨x← q,m, db⟩ ϵ−→ ⟨ϵ,m′, db⟩

IFTRUE
⟨e,m, db⟩ ↓ n n ̸= 0

⟨if e then c1 else c2,m, db⟩ ϵ−→ ⟨c1,m, db⟩
IFFALSE

⟨e,m, db⟩ ↓ n n = 0

⟨if e then c1 else c2,m, db⟩ ϵ−→ ⟨c2,m, db⟩

WHILETRUE
⟨e,m, db⟩ ↓ n n ̸= 0

⟨while e do c,m, db⟩ ϵ−→ ⟨c; while e do c,m, db⟩
WHILEFALSE

⟨e,m, db⟩ ↓ n n = 0

⟨while e do c,m, db⟩ ϵ−→ ⟨ϵ,m, db⟩

SEQ
⟨c1,m, db⟩ α−→ ⟨c′1,m′, db′⟩

⟨c1; c2,m, db⟩ α−→ ⟨c′1; c2,m′, db′⟩
SEQEMPTY

⟨ϵ; c,m, db⟩ ϵ−→ ⟨c,m, db⟩
OUTPUT

⟨e,m, db⟩ ↓ vl

⟨out(e, u),m, db⟩ ⟨vl,u⟩−−−−→ ⟨ϵ,m, db⟩

Fig. 7: Semantics rules for commands

con := {v} | {t} | con1 ∪ con2

dis := {con} | dis1 ∪ dis2

Pu := dis

Fig. 8: Syntax of user policy

defined as a set of sets in order to represent a disjunction
of conjunctions of simpler policies. A conjunction con is a
set of view v and table t identifiers, and a disjunction dis is
a set of conjunctions. For example, the policy Pu for user u
who is allowed to see table t1 and view v1, or view v2 but
not both, is defined as Pu = {{t1, v1}, {v2}}.

The overall policy of the system, written as P , is the list of
user policies. Per Def. 6, the policy Pu can be represented se-
mantically as an element JPuK of the Quantale of Information.
Thus, we can formulate our security condition as the assertion
that the knowledge of the database that the execution of the
program prg conveys to u is bounded above by the disjunctive
knowledge allowed by the policy, JPuK.

Definition 7. The program prg is secure for the user u and
policy Pu if JprgKu ⊑ JPuK.

V. ENFORCEMENT OF DISJUNCTIVE POLICIES

Having formulated the security condition, we would like to
prove that useful programs satisfy it. To this end, we intro-
duce a sound static enforcement mechanism, which imposes
some structural limitations on the policy and trades off some
completeness for the sake of efficiency and ease of analysis.

Fig. 9 illustrates how our mechanism functions at a high
level. We assume as input a program and policy in the format

Policy

Program Dependency
Analysis

Query
Abstraction

Query
Abstraction

Security
Check

Fig. 9: Enforcement steps

described in Fig. 5 and Fig. 8 respectively. The program is
then subjected to a static dependency analysis (Section V-B),
which computes an overapproximate set of possible paths
of control flow through the program, along with the queries
(dependencies) retrieved for each path, giving an element of
the DQ, that is a (disjunctive) set of (conjunctive) sets of
queries. Per Fig. 8, the policy is also already given in this
format.

We would like to verify that the program dependencies
are bounded by the policy in the DQ, as by Lemma 2, this
entails the security condition (Def. 7) that the disjunctive
information that is revealed by the program is bounded above
by the QoI interpretation of the policy. However, checking DQ
ordering on general queries may be computationally costly.
We therefore abstract (Section V-C) both the policy and the
path dependencies into a more tractable format (symbolic
tuples), which again overapproximates the information they
can retrieve. To guarantee soundness, we require that the views
in the policy are such that this abstraction is lossless for them.
Finally, as the security check (Section V-D), we compute a
tractable comparison on sets of sets of symbolic tuples that
can be shown to imply DQ ordering.



A. Conjunctive Queries

While our theoretical definitions are based on the fully-
general domain relational calculus as a query language, to
avoid complexity, our enforcement mechanism will work with
a restricted subset called conjunctive queries with comparisons
(CQCs). This language is a subset of relational calculus that
only employs conjunction (∧) and existential quantification (∃)
and omits disjunction (∨), negation (¬), and universal quantifi-
cation (∀). CQCs can model SELECT-FROM-WHERE portion of
SQL, where there are only AND and comparisons in the WHERE
clause.

Our language for (non-boolean) CQC q over a database
schema D employs the standard notation [19], [21], and has
the form heading← body:

ans(y)← R1(x1), ..., Rn(xn), C1, ..., Cm

where R1, ..., Rn are relations in D, and x1, ..., xn are their
variables. We use Var(q) = x1 ∪ ... ∪ xn to denote the set
of variables appearing in the body of the query q. C1, ..., Cm

are formulae of the form xi ⊕ xj where ⊕ is the comparison
operator which could be anything from <,≤,=, ̸=, >,≥ and
xi and xj are either variables in Var(q) or constants.

We require that y ⊆ Var(q). Without loss of generality,
we assume that there are no self-joins in the query. In case
of queries with self-joins, we can make logical copies of the
relations to accommodate them [21]. The body of a CQC q
comprises two parts, namely the relation identifiers R1, ..., Rn

referred to as ids(q), and the conditions C1, ..., Cm denoted
by cnd(q).

Similarly to Section III-A, the evaluation of q on the
database state db (denoted by JqKdb) is defined by taking all
tuples in the cartesian product of ids(q) in db that satisfy
cnd(q), and projecting to the column set y.

Example 5. Consider the database schema in Fig. 2. The
following query returns a set of tuples containing the names
of divisions whose managers have a salary of more than 50:

ans(d)← emp(n, r, s),mng(d,m), n = m, s > 50

B. Type-based Dependency Analysis

Our static dependency analysis builds on the generic type
system of van Delft et al. [15] and extends it with support
for disjunctive dependencies. We intuitively expect that a
disjunctive dependency analysis must be path-sensitive, so as
to distinguish between different executions and also keep track
of the history of observations. Both of these requirements
are often challenging for type-based analyses, which do not
naturally align with the execution order. We will first illustrate
these challenges with examples and then present our analysis.

Program 3 illustrates the need for path sensitivity. The
analysis should distinguish between the then branch, where
variable x depends on the set {y, w, z}, and the else branch
where x depends on {y, x}. Our reference analysis [15] would
join these two sets at the end of the if statement, ultimately
yielding the dependency set {x, y, w, z}. In our analysis,

1 if (y > 0) then
2 x := w + z;
3 else
4 x := x + 1;
5 out(x,u);

Program 3

1 if (z == 0) then
2 x ← q1;
3 else
4 x ← q2;
5 out(x,u);
6 if (z != 0) then
7 x ← q1;
8 else
9 x ← q2;

10 out(x,u);

Program 4

these sets are never joined, but instead combined to form
a set of sets, namely, {{y, w, z}, {y, x}}, where the outer
set represents a disjunctive dependency and the inner sets
represent conjunctive dependency.

Program 4 illustrates the need to keep track of the observa-
tion history. It outputs x at lines 5 and 10, and the dependency
set of x in both places is {{q1, z}, {q2, z}}. However, this
program will always output both q1 and q2. Now, if a policy
only allows user u to see either query q1 or q2, the outputs at
lines 5 and 10 will be incorrectly accepted. Hence, the analysis
should account for all outputs to user u.

Fig. 10 depicts the rules of our disjunctive dependency
analysis. We use judgments of the form ⊢ c : Γ, where Γ is an
environment mapping variables Var to set of sets of depen-
dencies Dep. The set of variables is Var = PV ∪ U ∪ {pc},
where PV are program variables, U are users, and pc is the
program context. The dependencies Dep are Dep = Var ∪ Q,
where Var are variables and Q are queries that can be issued
to a database. We use u ∈ U to indicate the dependencies of
all outputs to user u.

We start by introducing the operators and auxiliary functions
employed within the rules, and then proceed to explain the
rules themselves. The operator ⊗ is used to join two (or more)
sets of sets, defined as:

Γ1(x1)⊗ ...⊗ Γn(xn) = {S1 ∪ ... ∪ Sn | Si ∈ Γi(xi)

i = 1, . . . , n}

For example, the join of Γ1(x) = {{x, y}, {z, y}} and
Γ2(y) = {{w}, {x, z}} is:

Γ1(x)⊗ Γ2(y) = {{x, y, w}, {x, y, z}, {z, y, w}}

Intuitively, the result of the join operator is a set of sets
capturing the product of the original sets of sets under the
set union operation. We use this operator to calculate all the
possible combinations of two environments.
Γ2; Γ1 represents the sequential composition of two environ-

ments. Intuitively, Γ2; Γ1 is the same as Γ2 but updated with
all of the dependencies that have been previously established
in Γ1. Formally:

Γ2; Γ1(x) =
⋃

S2∈Γ2(x)

⊗
y∈S2

Γ1(y)



For example, the sequential composition of the environments

Γ1 = [x 7→ {{x}, {y}}, y 7→ {{y}}, pc 7→ {{y, pc}}]
Γ2 = [x 7→ {{pc, x}}, y 7→ {{pc, y}}, pc 7→ {{pc}}]

evaluates to

Γ2; Γ1 = [x 7→ {{x, y, pc}, {y, pc}}, y 7→ {{pc, y}},
pc 7→ {{y, pc}}]

Finally, the operator ⋓ calculates the union of two en-
vironments: Γ1 ⋓ Γ2 = ∀x ∈ Var, Γ1(x) ∪ Γ2(x). This
operator is used in conditionals to capture the disjunctive join
of the two branches. For example, in line 5 in Program 3,
Γ1(x) = {{y, w, z}} and Γ2(x) = {{y, x}}, and the result of
(Γ1 ⋓ Γ2)(x) would be {{y, w, z}, {y, x}}.

For loops, we rely on the fixed-point of Γ, denoted by Γ∗,
which we define as:

Γ∗ =
⋃
n>0

Γn

where Γ0 = Γid and Γn+1 = Γn; Γ.
In these rules, Γid is the identity environment, defined as

∀x ∈ Var, Γid(x) = {{x}}, and fv(e) denotes the free
variables of expression e.
T-ASSIGN updates the dependency set of the assigned variable
x to the set of the free variables of expression e and pc, other-
wise it matches the identity environment. Rule T-QUERYEVAL
is similar to assignment, except that instead of fv(e), it adds
query q to the dependency set.
T-IF sequentially composes the dependency sets of each
branch with the environment Γid[pc 7→ {fv(e) ∪ {pc}}], thus
adding variables of the branch condition to the dependency set
of each branch. Finally, these environments (Γ1 and Γ2) are
joined disjunctively using the ⋓ operator.
T-WHILE uses the fixed-point operator to calculate the de-
pendency set of the loop. To do so, it first calculates the
dependency set of the loop body, which is sequentially com-
posed with Γid[pc 7→ {fv(e) ∪ {pc}}] to account for the
dependencies to the loop condition. Finally, the fixed-point
operator computes the dependency set of the while loop.
T-OUTPUT relies on the dependency set including fv(e),
{pc} and {u}, where fv(e) includes all the variables of the
expression outputted to user u, {pc} captures the implicit de-
pendencies to the path conditions, and {u} is the dependency
set of user u and captures the history of dependencies that
user u might have observed up to this point. Observe that by
the definition of sequential composition, all the dependencies
of the previous outputs will be added to u.

This analysis yields a final environment Γfin. The result
of the analysis is the value of this environment for the
user identifier u, which includes both queries and program
variables. Since program variables do not contain sensitive
information, and we are primarily concerned with queries, we
refine the result of Γfin(u) to only include queries. This refined
outcome defines the ultimate result of our analysis, denoted

as QLu:

QLu ≜
⋃

S∈Γfin(u)

{S ∩Q}

The soundness proof of our enforcement relies on the
circumstance that, if the set of queries on which the u-outputs
of prg depend when running on a database state db are denoted
by Qprg,u(db), then this set is guaranteed to be found in the set
QLu produced by the dependency analysis. We show how to
define Qprg,u(db) using a taint-tracking semantics presented
in the full version of the paper [16]. Formally, this gives
rise to the following soundness condition for the dependency
analysis.

Lemma 3. For all db ∈ ΩD, Qprg,u(db) ∈ QLu(prg).

C. Query Abstraction

Even for CQCs, comparing the information revealed by sets
of queries is hard in general. To define a well-behaved and
more tractable determinacy order on which to build our DQ,
we introduce another overapproximating abstraction, which we
will use to soundly label queries and policies.

We define a symbolic tuple as ⟨T, ϕ, π⟩, where T =
{t1, t2..., tn} is a set of table identifiers, ϕ is a boolean
combination of equality, inequality, and comparisons over the
columns of the tables in T , and π is a subset of the columns
of the tables in T . In a symbolic tuple, π denotes the query’s
projection on the columns of the tables in T , and ϕ defines
the constraints over the rows.

Example 6. The symbolic tuple of query ans(d) ←
emp(n, r, s),mng(d,m), n = m, s > 50 defined on the rela-
tions of Fig. 2 would be ⟨{emp,mng}, s > 50∧n = m, {d}⟩.

While calculating the exact set of symbolic tuples of a
relational calculus query is intractable for many classes of
queries, it is tractable for conjunctive queries with compar-
ison (CQC). Given a conjunctive query q = ans(y) ←
R1(x1), ..., Rn(xn), C1, ..., Cm, the function sts computes a
symbolic tuple from q as follows:

sts(q) = ⟨ids(q′),
( ∧
C∈cnd(q′)

C
)
, y⟩

where ids(q′) and cnd(q′) defined in Section V-A return the
relation identifiers and conditionals of q′, respectively. Here,
q′ is the query obtained by recursively replacing views with
their definitions. We lift this definition to sets of queries Q,
and define sts(Q) as {

⋃
q∈Q sts(q)}.

Using sts, we define the function σst for a set of sets of
queries Q as follows:

σst(Q) = {sts(Q) | Q ∈ Q}

Policy Analysis. The function σst can also be used to map
a disjunctive security policy to a set of labels. However, in
order to ensure soundness and avoid approximation, we place
some constraints on policies. (1) To make computing the set of
symbolic tuples tractable we only support policies with views



T-SKIP
⊢ skip : Γid

T-ASSIGN
Γ = Γid[x 7→ {fv(e) ∪ {pc}}]

⊢ x := e : Γ
T-OUTPUT

Γ′ = Γid[u 7→ {fv(e) ∪ {pc, u}}]
⊢ out(e, u) : Γ′

T-QUERYEVAL
Γ = Γid[x 7→ {{q, pc}}]

⊢ x← q : Γ
T-IF
⊢ ci : Γi Γ′

i = Γi; Γid[pc 7→ {fv(e) ∪ {pc}}] i = 1, 2 Γ′ = (Γ′
1 ⋓ Γ′

2)[pc 7→ {{pc}}]
⊢ if e then c1 else c2 : Γ′

T-WHILE
⊢ c : Γc Γf = (Γc; Γid[pc 7→ {fv(e) ∪ {pc}}])∗ Γ′ = Γf [pc 7→ {{pc}}]

⊢ while e do c : Γ′ T-SEQ
⊢ c1 : Γ1 ⊢ c2 : Γ2 Γ′ = Γ2; Γ1

⊢ c1; c2 : Γ′

Fig. 10: Type-based dependency analysis rules

in the CQC form. (2) We require that the symbolic tuples of
views be well-formed, which we define as:

Definition 8. The symbolic tuple ⟨T, ϕ, π⟩ is said to be well-
formed if it satisfies dep(ϕ) ⊆ π.

where ϕ = C1 ∧ ... ∧ Cn and dep(ϕ) =
⋃

i∈{1,...,n} fv(Ci)
returns the column dependency set of ϕ.

Well-formedness ensures that the symbolic tuples are pre-
cise, at the expense of limiting a view to only applying
constrains on the columns which it projects on.

Furthermore, we treat the table identifiers used in policies
as special views that return the whole table. For instance, a
policy which allows access to table emp can be rewritten as
view ans(n, r, s)← emp(n, r, s).

As discussed in Section IV, the disjunctive security policy of
user u (written as Pu) is a set of conjunctions con, interpreted
as a disjunction of conjunctions of table and view identifiers.
For a policy Pu that adheres to the constraints mentioned
earlier, σst is defined as follows:

σst(Pu) = {sts(con) | con ∈ Pu}

Labels. In our model, a security label ℓ is defined as a set
of symbolic tuples, and we define the ordering relation of two
labels, written as ℓ1 ⊑st ℓ2, as follows:

Definition 9. ℓ1 ⊑st ℓ2 iff for all symbolic tuples
⟨T, ϕ, π⟩ ∈ ℓ1, there are well-formed symbolic tuples
⟨T1, ϕ1, π1⟩, ..., ⟨Tn, ϕn, πn⟩ in ℓ2 such that T ⊆ (T1∪...∪Tn),
T1, ..., Tn are disjoint, ϕ |= (ϕ1 ∧ ...∧ϕn), and dep(ϕ)∪ π ⊆
(π1 ∪ ... ∪ πn).

To ensure soundness, we assume that all of the symbolic
tuples in the right hand side of ⊑st are well-formed. This
definition relies on entailment to check the ordering of ϕ, and
write ϕ1 |= ϕ2 which means that any assignment that satisfies
ϕ1 also satisfies ϕ2.

Example 7. Consider symbolic tuples ℓ1 = {⟨{emp}, s =
10, {r}⟩} and ℓ2 = {⟨{emp,mng}, s > 5, {r, s,m}⟩}. We
have ℓ1 ⊑st ℓ2 since {emp} ⊆ {emp,mng}, {r} ⊆ {r, s,m},
s = 10 |= s > 5 and {s} ∪ {r} ⊆ {r, s,m}.

D. Enforcement

The dependency analysis of Section V-B extracts the depen-
dencies of program prg’s outputs to user u and produces QLu.
Applying σst to QLu yields a set of labels, each bounding the

ak(Pu)

k(prg)u

Pu

QLu

JPuK

JQLuK

prg JprgKu

⇒ ⇒

⇒ ⊑
⊑⊑⊑
∗

D.A.

σst

σst

QoIDQ

Fig. 11: Overall architecture of our proof

information revealed in some path, the u-knowledge of prg
(denoted by k(prg)u). We interpret this as a disjunction, as
any execution follows along one particular path.

Similarly, applying σst to the disjunctive security policy of
user u (i.e., Pu) results in a set of labels. Each label faithfully
captures one conjunction, and so the policy is also represented
as a set of labels ak(Pu), interpreted disjunctively.

By Lemma 2, to verify that the security condition is
satisfied, it is sufficient to establish that QLu ⊑ Pu in the DQ.
However, checking ⊑ in the DQ is not generally tractable. For
the security check, we therefore instead perform a twofold
approximation: we check ordering for the conjunctive inner
sets using the approximate ordering ⊑st, and approximate the
mix-based ordering on the disjunctive outer sets in a way that
loses little relative to our analysis:

Definition 10. We say that k(prg)u ⊑∗ ak(Pu) iff

∀ℓk ∈ k(prg)u, ∃ℓak ∈ ak(Pu). ℓk ⊑st ℓak

where ℓak and ℓk are labels, and ⊑st is the symbolic tuple
ordering of Def. 9. To ensure faithful labeling of policies,
we assume all of the symbolic tuples in ℓak are well-formed
as defined in Def. 8. We can then formalize the relationship
between ⊑∗ and ⊑ as follows.

Lemma 4. If σst({Q1, ..., Qn}) ⊑∗ σst({P1, ..., Pm}), then
in the DQ, (Q1 ∨ ... ∨Qn) ⊑ (P1 ∨ ... ∨ Pm).

E. Soundness Proof

Fig. 11 outlines the overall architecture of our enforcement
mechanism and the correctness assertion that we make of it.

The rightmost column of Fig. 11 represents a chain of
information order relations in the QoI, which we establish for



each enforcement step. Following the chain from bottom to
top, we obtain the security condition of Def. 7. At the same
time, the “left boundary” of the figure, comprising the D.A.,
σst abstractions and ⊑∗ check, represents the computations
that are actually performed to check a program.

Theorem 1. If a program prg satisfies Def. 10, then it is
secure in the sense of Def. 7.

VI. IMPLEMENTATION AND EVALUATION

In this section, we describe our prototype DIVERT [23],
which implements the type-based dependency analysis of
Section V-B and query abstraction of Section V-C to verify
the security of database-backed programs. We then evaluate
DIVERT’s effectiveness using functional tests and an assort-
ment of real-world-inspired use cases.

A. Implementation

To evaluate the feasibility and security of our approach in
practice, we implemented the type-based dependency analysis
of Section V-B. For the sake of practicality, instead of CQC,
DIVERT uses the SELECT-FROM-WHERE portion of SQL, which
is analogous to CQC as described in Section V-A. Following
the query analysis of Section V-C, these SQL queries are then
converted into symbolic tuples. For the security check, the
symbolic tuples with the result of the program analysis must
be compared to those representing the policy; to perform this
comparison following Def. 9, we use the Z3 SMT solver [24].
Our implementation operates on programs in the language
presented in Section IV-A, with the addition of two macros
@Table@ and @Policy@ for defining the tables’ schema and
the security policy.

B. Test suite

To validate our implementation, we use a functional test
suite consisting of 20 programs, designed to capture a broad
variety of examples of disjunctive dependencies. This suite
includes programs with row- and column-level policies of
varying granularity levels, and those necessitating the use of
SMT solvers for verification. Furthermore, the tests verify
the behaviour of the dependency analysis by incorporating
complex conditionals, loops, and implicit and explicit outputs.
The tests can be found in the implementation repository [23].

C. Use cases

We evaluate DIVERT on four use cases inspired by real-
world problems in which disjunctive policies naturally arise.
The purpose of this evaluation is to validate the security anal-
ysis of DIVERT on realistic scenarios involving disjunctive
policies, and ensure that its behaviour is consistent with the
definitions of Section IV-B. Rather than analysing complete
applications for each example, we therefore focus on smaller
kernels that capture the core security-critical behaviour of the
respective problem.
Privacy-preserving location service. Multilateration is a
technique to determine the location of a user by measuring
their distance to known reference points [25]. Two distances

are sufficient to narrow a user’s location down to one of two
points on a map, and three identify the location unambigu-
ously. Consider a location service provider which tracks, for
some number of users, not only their precise location but
also their distances to certain points of interest (PoI) such as
restaurants or shops. An advertiser wants to query this service
to provide location-based ads. For example, if the user is close
to a shop A, and A has a sale going on, the user may be enticed
by this information.

Privacy and business considerations make it desirable to not
reveal the precise location of the user to the advertisement
company accessing the database, while still allowing for some
location-based services in this vein. If the advertiser were to
learn the distance of a single user to two or more PoIs at a
specific time, the user’s location could be inferred. However,
we may still want to release the user’s distance to any one PoI
which they are currently closest to. This can be interpreted as a
disjunctive policy, in which the information revealed for each
user is bounded by the disjunction of that user’s distances to
some single PoI.

The database schema consists of a single table
Distance(id, poi, dis, loc), which stores the
ID of each user, the name of the PoI, their distance,
and the user’s precise location. We implement a small
example with two PoIs {‘restaurant’, ‘mall’} and two users
{1, 2}. Let the view vi,j for each user i and PoI j be
defined as the query SELECT id, poi FROM Distance
WHERE id = i AND poi = j. The disjunctive policy
then covers every combination of user and PoI as a
possibility: {{v1,‘restaurant’, v2,‘restaurant’}, {v1,‘restaurant’, v2,‘mall’},
{v1,‘mall’, v2,‘restaurant’}, {v1,‘mall’, v2,‘mall’}}.

We test two programs against this policy. In one, the
advertiser uses internal parameters identifying a target user
and interest, and issues a single query requesting that user’s
distance from the relevant point of interest. In the other, the
advertiser still targets a particular user, but queries all of that
user’s distances. As expected, DIVERT accepts the former
program, but rejects the latter.
Privacy-preserving data publishing. Expanding upon the
motivating example in the introduction, we consider the case
of programs querying a database with personally identifiable
information (i.e., quasi-identifiers). As discussed before, re-
vealing too many quasi-identifiers may make it possible to
identify an individual. We consider the example of a medical
database [5] with a table Patients(zip, gen, dis) storing
the ZIP code of residence, gender and disease of patients. An
agent querying the database should not learn more than two
of these at a time. For simplicity’s sake, we only consider
queries that retrieve the same data from each patient. Defining
v1 = SELECT dis, gen FROM Patients, v2 = SELECT
zip, gen FROM Patients, and v3 = SELECT zip, dis
FROM Patients, the disjunctive policy can then be written
as {{v1}, {v2}, {v3}}.

Once again, we validate two programs against this policy.
Branching on an internal parameter, the client will issue
one query to select data for either male or female pa-



tients. In the first program, all queries take the form of
SELECT dis FROM Patients WHERE gen = ‘F’, whereas
in the second one, one of the queries additionally filters on
the ZIP code: SELECT dis FROM Patients WHERE gen =
‘F’ AND zip = 10001. Again, only the latter program is
rejected by DIVERT. This reveals a potential subtlety, as data
dependency and hence release of information may arise not
only from what columns are selected, but also from conditions
restricting the set of rows.

Secret sharing. We implement a (t, n) secret sharing schema
that splits a secret value s into n shares s1, s2, ..., sn. These
shares are then distributed among n parties p1, p2, ..., pn, each
receiving a unique share. A secure secret sharing schema
requires that the secret s can only be reconstructed if t or more
participants combine their shares. If the number of combined
shares is less than t, no information about the secret should be
revealed. This requirement naturally translates to a disjunctive
policy s1 ∨ s2 ∨ ...∨ sn, stipulating that participants can each
only learn one share.

We assume that the shares s1, s2, ..., sn are created by a
secure secret sharing schema and are then stored in a database.
The database schema consists of the table Shares(shareID,
shareVal) which stores the ID of each share and their
corresponding value.

The policy only allows a user to read one of the shares
(i.e., only one row of the table). We define the view vi for
each share as SELECT shareVal, shareID FROM Shares
WHERE shareID = i where i = 1, ..., n. The corresponding
disjunctive policy is going to look like {{v1}, {v2}, ..., {vn}}.

We implement a program that executes a subroutine for
each user, issuing a database query to retrieve the user’s
share. For example the query for a user to retrieve the
share number 5 is SELECT shareVal FROM Shares WHERE
shareID = 5 and it is correctly accepted by DIVERT. If the
same user issues another query to retrieve share number 6,
it violates the policy and hence the program is rejected. This
scenario shows that DIVERT is able to correctly enforce row-
level policies precisely.

Online shop. This use case models an online shop and a user
with a gift card can only use it to “buy” items that match the
value of the gift card. Here we consider a scenario with an
online shop that only provides digital items and they are stored
in a database. The database schema consists of the items table
Items(id, name, data) which stores the ID and name of
each digital item. We define a view vn for each item as SELECT
data, name FROM Items WHERE name = n where n is the
item’s name.

Assume a database that has the items Movie,
CinemaTicket, Audiobook, Ebook, and GymMem. A
policy should only allow the user to access a certain
amount of items whose value adds up to value of gift
card. For instance a disjunctive policy may look like:
{{vMovie, vCinemaTicket}, {vAudiobook, vEbook}, {vGymMem},
{vCinemaTicket, vEbook}}.

We model a user program that issues queries to select items,
e.g., SELECT data FROM Items WHERE name = ‘Movie’.

DIVERT accepts this query because view vMovie allows
the user to access Movie. We create two different scenarios;
in one the user issues another query asking for Audiobook,
which DIVERT rejects. In the second scenario, the user asks
for CinemaTicket which is allowed by the policy, and hence
DIVERT accepts it.

VII. RELATED WORK

This section puts our contributions in the context of re-
lated works in the areas of information flow security and
database security, discussing security models of dependencies
and tractable enforcement mechanisms. To our knowledge, we
are the first to explore enforcement mechanisms for disjunctive
policies, as well as to reconcile semantic models of (disjunc-
tive) dependencies across the areas of information flow control
and database access control.

Security models. Semantic models of dependencies have a
long history since the introduction of the Lattice of Informa-
tion (LoI) by Landauer and Redmond [7]. These models define
a lattice structure to represent information as equivalence
relations ordered by refinement and serve as cornerstone to
justify soundness of various dependency analysis at the heart
of enforcement mechanisms for security. For example, the
universal lattice by Hunt and Sands [26] models dependencies
between program variables such that the lattice elements are
sets of variables ordered by set containment, and uses it to
justify soundness against baseline security conditions, e.g.,
noninterference [27].

Within the database community, Bender et al. [4], [8]
define the notion of Disclosure Lattice to represent the in-
formation disclosed by sets of database queries. Disclosure
Lattice has been further developed by Guarnieri et al. [14]
to enforce conjunctive information-flow policies for database-
backed programs. We point out that not all disclosure orders
are suitable to represent information disclosure in the context
of information flow control: By studying its relation to LoI,
we show that query determinacy and the stronger notion of
equivalent query rewriting [20] provide sound abstraction,
while query containment does not.

Our work builds on recent work by Hunt and Sands [9],
which provides a semantic model for disjunctive dependencies,
under the notion of the Quantale of Information. We study
quantale structures in the context of databases, providing
support for disjunctive policies in database-backed programs.
While these policies are rooted in the area of access control,
cf. ethical wall policies [28], the work of Hunt and Sands
[9] is the first to provide an extensional characterization as
information-flow policies. Drawing on our new notion of
Determinacy Quantale, we develop a security condition to
capture the security of database-backed programs in presence
of disjunctive database policies.

Enforcement mechanisms. The problem of enforcing dis-
junctive policies for programs and/or databases is completely



unexplored. We study how a standard type-based program
analysis [15], equipped the notion of path sensitivity, can be
adapted to statically capture disjunctive program dependencies.

At the core of our analysis is a new abstraction of database
queries which enables flexible enforcement of disjunctive
policies by means of SMT solvers, as witnessed by our use
cases. An immediate benefit of our Determinacy Quantale is
that we can prove soundness of the enforcement with respect
to a solid semantic baseline for disjunctive dependencies.

There exists a wide array of works enforcing conjunctive
policies for database-backed programs. Guarnieri et al. [14]
propose dynamic monitoring to enforce database policies.
Their abstractions are limited to boolean queries and rely on
the Disclosure Lattice of Bender et al. [4], [8], which may
cause soundness issues when assuming query containment as
the underlying lattice order.

Language-integrated queries are supported by a range of
works such as SIF [10] and JSLINQ [12], SELINKS [11],
UrFlow [29], DAISY [14], Jacqueline [30], and LWeb [13]
for row- and column-level conjunctive policies. These works
apply PL-based enforcement techniques such as type systems,
dependent types, refinement types, and symbolic execution
to database-backed programs [13], [14], [31], [32], but lack
support for expressing and enforcing disjunctive policies.

Li and Zhang [33] explore path-sensitive program analysis
to improve precision of information flow analysis, yet they do
not consider disjunctive policies. QAPLA [34] is a database
access control middleware supporting complex security poli-
cies, such as linking and aggregation policies, with focus only
on access control.

VIII. CONCLUSIONS

We presented a case for the significance of disjunctive
dependency analysis to the security of database-backed pro-
grams. After reviewing recent theoretical developments in
representing disjunctive information, we introduced two struc-
tures, the Determinacy Lattice and the Determinacy Quantale,
as database-oriented counterparts to theoretical structures rep-
resenting simple and disjunctive knowledge respectively.

Using these structures, we formulated a security condition
which expresses that a database-backed program satisfies a
given disjunctive policy. In order to enforce this security con-
dition, we developed a type-based static analysis to compute
a bound on the disjunctive dependencies of database-backed
programs in a model language. By a series of approximations,
this bound itself can be tractably compared to the representa-
tion of a static policy.

These steps constitute an enforcement mechanism for dis-
junctive policies, which we proved sound with respect to our
security condition. To showcase this enforcement mechanism,
we implemented it in our prototype tool, DIVERT. In order to
validate this prototype and the overall framework, we verified
the tool on a set of functional tests covering a variety of
language features and disjunctive information patterns, as well
as several use cases representing real-world scenarios in which
we want to enforce disjunctive policies.
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