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Abstract—Confidential computing is a promising technology
for securing code and data-in-use on untrusted host machines,
e.g., the cloud. Many hardware vendors offer different imple-
mentations of Trusted Execution Environments (TEEs). A TEE
is a hardware protected execution environment that allows
performing confidential computations over sensitive data on
untrusted hosts. Despite the appeal of achieving strong security
guarantees against low-level attackers, two challenges hinder
the adoption of TEEs. First, developing software in high-level
managed languages, e.g., Java or Scala, taking advantage of
existing TEEs is complex and error-prone. Second, partitioning
an application into components that run inside and outside a
TEE may break application-level security policies, resulting in
an insecure application when facing a realistic attacker.

In this work, we study both these challenges. We present
JE , a programming model that seamlessly integrates a TEE,
abstracting away low-level programming details such as initial-
ization and loading of data into the TEE. JE only requires
developers to add annotations to their programs to enable the
execution within the TEE. Drawing on information flow control,
we develop a security type system that checks confidentiality and
integrity policies against realistic attackers with full control over
the code running outside the TEE. We formalize the security
type system for the JE core and prove it sound for a semantic
characterization of security. We implement JE and the security
type system, enable Java programs to run on Intel SGX with
strong security guarantees. We evaluate our approach on use
cases from the literature, including a battleship game, a secure
event processing system, and a popular processing framework
for big data, showing that we correctly handle complex cases of
partitioning, information flow, declassification, and trust.

Index Terms—Information Flow Control, Trusted Execution
Environment, Robust Declassification, Security Type System

I. INTRODUCTION

Confidential computing includes recent technologies to pro-
tect data-in-use through isolating computations to a hardware-
based Trusted Execution Environment (TEE). TEEs provide
hardware-supported enclaves to protect data and code from
the system software. Over the past few years, an array of TEE
designs has been developed, including Intel’s Software Guard
Extensions (SGX) [1], [2], ARM TrustZone [3], MultiZone [4]
and others [5], [6], [7], [8], [9]. Using TEEs, data can be
loaded securely in plain text and processed at native speed
within an enclave even on a third-party machine. SGX is a
TEE implementation from Intel which has been successfully
used in a number of industry products [10], [11].

The issue with confidential computing Supporting confiden-
tial computing in a way that is both accessible for developers
and technically secure is still an open problem.

First, seamless integration of enclave programming into
software applications remains challenging. For example, Intel
provides a C/C++ interface to the SGX enclave but no direct
support is available for managed languages. As managed
languages like Java and Scala are extensively used for
developing distributed applications, developers need to either
interface their programs with the C++ code executing in the
enclave (e.g., using the Java Native Interface [12]) or compile
their programs to native code (e.g., using Java Native [13])
relinquishing many advantages of managed environments.

A second aspect concerns security with realistic attackers.
Standard security analysis of code protects against passive
attackers, as common for untrusted/buggy code executing in a
single trusted host [14]. Yet, with enclaves, programs run in a
trusted environment within an untrusted host: the attacker can
control the untrusted environment to cause additional leaks
of sensitive information through the interface between the
two environments. An active attacker may force the enclave
program to violate the security policy by compromising
the integrity of inputs at the interface or by controlling
the execution order of interface components, e.g., to trigger
execution paths and side effects that were not possible in the
original program. Current research adopts Information Flow
Control (IFC) to ensure that the code within an enclave does
not leak sensitive information to the non-enclave environment
[15], [16], [17]. This research, however, either takes a limited
view of a passive attacker that only observes the data leaving
the enclave, or it incorporates the effects of an active attacker
into the execution semantics and the security condition,
thus requiring additional verification effort to secure enclave
programs.

These challenges lead us to the following key research
questions addressed by the paper: (a) How to enable seamless
integration of enclaves and managed languages like Java? (b)
What is the right security model for realistic enclave attacks
and how to statically verify the security of enclave programs
with respect to these attacks? (c) How to harden state-of-the-
art IFC tools to verify security in the TEE context? (d) How
to demonstrate feasibility via realistic use cases?

Accessible and secure confidential computing To address the
questions above, we present JE , a programming model that
offers language-level integration of enclave technology. We
leverage IFC to secure applications running within TEEs and
propose a security condition and an enforcement mechanism



targeting realistic attackers in the context of TEEs.
To support seamless integration of enclave programming,

JE defines a programming model for developers of enclave
applications as a Java extension based on three annotations
and two operators. Programmers can execute computations
securely just by adding the @Enclave annotation to classes to
be placed inside the enclave and the @Gateway annotation to the
methods accessible from the non-enclave environment. Also,
programmers can label secret data with @Secret annotations
and control the release of secret information to the non-
enclave environment via the declassify operator as well as
the influence of untrusted information from the non-enclave
environment via endorse operator. JE builds on the Java
information flow (Jif) security-typed language [18] to statically
check confidentiality and integrity policies of code running
within an enclave. A JE program is automatically translated
into an equivalent Jif program.

To provide security against realistic attackers, our key
observation is that a program is secure in the presence
of enclave active attackers iff the program does not leak
additional sensitive information as compared to executing the
program in the presence of a passive attacker. Inspired by the
line of works on IFC for distributed applications [19], [20], we
propose robustness, a semantic characterization of security for
enclaves for two realistic active attackers. Robustness captures
the interplay between the integrity of untrusted data coming
from the non-enclave environment and the confidentiality of
secret data within the enclave, ensuring that an active attacker
does not learn additional information. We enforce robustness
with a security type system for a core of JE to check that the
active attackers’ control over inputs at the enclave interface
and over the execution order of interface components does
not enable them to learn more sensitive information than
a passive attacker who merely observes the outputs at the
interface. Importantly, our security type system can be used
to check robustness for the partitioned programs leveraging
existing verification efforts for the original program before
partitioning. In contrast to existing type systems for robust
declassification [19], [20], [21], our security type system is
flow sensitive [22] which poses additional challenges with
declassification policies and enclave attackers.

To validate the design of JE , we verify several case studies
from the literature. To validate our approach to security for
enclaves, we prove our security type system sound with respect
to robustness, showing that it accepts only secure programs.
The implementation of JE and the case studies discussed in
the paper are publicly available 1. In summary, this paper
makes the following contributions:
• We present JE , a programming model that seamlessly

supports computations inside an enclave. In this model,
programmers use annotations to identify the computations
to be executed inside the enclave.
• We provide a core calculus for JE and propose a semantic

security model to capture the essence of information flows

1https://prg-grp.github.io/je-lang

in the presence of active enclave attackers.
• We enforce robustness statically via a security type system,

which we prove sound for programs implemented in JE .
• We evaluate the applicability of JE using different case

studies.
The paper is structured as follows. Section II introduces

enclave technology and the different approaches for enclave
software development. Section III overviews the JE design.
In Section IV, we present a security framework for JE .
Section VI describes the implementation. The evaluation is in
Section VII. Section VIII presents related work and Section IX
concludes.

II. TRUSTED EXECUTION ENVIRONMENTS IN A NUTSHELL

In this section, we introduce TEEs and we refer to Intel
SGX, as a concrete implementation. TEEs make use of
dedicated processor instructions and modified memory access
mechanisms to enable private computations. The principle
behind a TEE is to provide applications with memory isolation.
With the help of the dedicated instructions, applications
can create private memory regions known as enclaves. An
enclave is essentially a reserved area in the system memory
protected by the CPU. Data inside an enclave is protected
from high privilege software such as OS, VMM and BIOS.
This design leads to two distinct execution environments –
the enclave environment (trusted environment) and the non-
enclave environment (regular system memory).

Intel Software Guard Extensions (SGX) [1], [2] is an
enclave implementation from Intel introduced with the sixth
generation Intel core and Intel Xeon E3 v6 server processors.

A. The SGX Mechanism

In SGX enabled systems, the BIOS reserves a contiguous
part of the DRAM as Processor Reserved Memory (PRM).
Currently, the size of the PRM is limited to 128 MB. Out of
this PRM, a memory region of about 90 MB is used as Enclave
Page Cache (EPC) which stores the enclave code and data. The
content of the enclave memory is encrypted using the Memory
Encryption Engine (MEE) and is decrypted only when inside
the CPU. This solution protects the enclave data from an
attacker having physical access to DRAM. An application
creates a new enclave using the ECREATE instruction. The
enclave memory can only be accessed from inside the enclave.
The CPU rejects any attempt to access the enclave memory
from the non trusted environment. SGX provides a Remote
Attestation (RA) service to verify the integrity of the data
loaded inside the enclave. We refer to Costan and Devadas [23]
for a detailed description of SGX.

B. Software Development with SGX

There are two main development methodologies used for
programming with SGX enclaves. One is to use the C/C++
interface provided by Intel along with the Microsoft Visual
Studio IDE. In this approach, a programmer writes their
application in C/C++, programs to be executed inside and
outside the enclave are written in two separate projects and
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together they form a complete application. The application
is compiled using the Intel compiler integrated into the IDE.
The benefit of this approach is that the developer can keep
the trusted code base (TCB) minimal. Unfortunately, no
such support is available for applications written in managed
languages. The other approach is to use systems based on
library OSes [24], [25], [26], [27], [28]. They allow running
unmodified applications inside the enclave. The application
and the library OS are compiled together into an image file
and the host OS runs the image inside the enclave.

C. Attacker models with enclaves

In this work, we consider two attacker models: a passive
attacker and (two variants of) an active attacker. A passive
attacker cannot modify the execution state of the program
(inside or outside the enclave) and can only observe the entire
execution state of the non-enclave environment. The rationale
is that a developer can partition the original program into an
enclave component and a non-enclave component, assuming
that the partitioned program will be as secure as the original
program, so long as the enclave component contains the secret
data as well as any code that accesses these data.

The active attacker model extends the threat model con-
sidered in [15], [16] and considers that an active attacker
can arbitrarily alter the state of the non-enclave environment
and hence it can modify the data exchanged between the two
environments. An active attacker can influence the execution of
the enclave component either by compromising the integrity of
inputs at the interface or by controlling the execution order of
the interface components. Both cases may lead to triggering
execution paths and side effects that were not possible in
the original program, thus enabling learning more sensitive
information than a passive attacker.

For both attacker models, we only assume that the enclave
hardware and software, except for the JE source program,
are trusted. The JE uses static analysis to check that a
passive attacker learns no more information about secret data
than allowed by the original program, and to check that an
active attacker learns no more information than a passive
attacker. Denial-of-service attacks, arbitrary destruction of
enclaves by the host OS, hardware side-channel attacks, and
power analysis attacks are out of the scope of this paper.
We also ignore covert channels including termination and
timing. While termination channels have well-understood
information leakage bounds [29], orthogonal techniques such
as constant-time programming [30] and predictive mitigation
mechanisms [31] can help mitigating some of these concerns.

III. JE DESIGN

We propose a language design that supports computations
inside an SGX enclave. Our approach, JE , relieves the
programmer from dealing with the lower-level details of SGX,
such as enclave creation, initialization, and destruction. More-
over, JE supports security annotations to define application-
level policies that are subsequently interpreted as information
flow policies and are verified via a security type system.

Listing 1: Language constructs
1 @Enclave
2 class Encrypter {
3

4 @Secret static String key;
5

6 @Gateway
7 public static String encrypt(String plaintext) {
8 String cipher = encode(plaintext, key);
9 return declassify(cipher);

10 } }

Listing 2: The Endorse operator
1 @Enclave
2 class Encrypter {
3

4 @Secret static String key;
5

6 @Gateway
7 public static String encrypt(String plaintext) {
8 String cipher = "";
9 String plaintextE = endorse(plaintext);

10 if (plaintextE.length() == 8) {
11 String var1 = encode(plaintextE, key);
12 cipher = declassify(var1);
13 }
14 return cipher;
15 } }

A. JE Annotations

JE extends the Java language with annotations to specify
the parts of the program that run inside SGX as well as the
sensitive data. We demonstrate these features using a routine
to securely encrypt data (Listing 1). Encryption is based on a
key that should be kept secret; hence the whole encryption
operation should run within the enclave. JE supports the
following annotations to define security policies.

a) Class annotation @Enclave: A programmer can
annotate any class with the @Enclave annotation. Hereafter,
we refer to such classes as enclave classes. The code and
the data that belong to enclave classes are placed inside the
enclave. To ensure that data and computations related to
encryption take place within the enclave, the class Encrypter

in Listing 1 is annotated with the @Enclave annotation.
b) Field annotation @Secret: A programmer can anno-

tate fields of an enclave class with the @Secret annotation – we
refer to such fields as secret fields. The annotation denotes that
the field holds sensitive information. Any program construct
influenced by a secret field will also be considered as secret in
order to prevent flows of any sensitive data from the enclave
to the non-enclave environment. In Listing 1, the key field is
used as a key for encryption. The key field is annotated with
the @Secret annotation to denote that its value must not be
leaked to the non-enclave environment.

c) Method annotation @Gateway: Static methods defined
inside an enclave class can be annotated with the @Gateway

annotation. We refer to these methods as gateway methods.
These methods act as an interface between the enclave and the
non-enclave environment: the execution switches from the non-
enclave environment to the enclave when a gateway method
is called from the non-enclave environment. In Listing 1, the
encrypt method is annotated with the @Gateway annotation
to ensure that encryption is performed within the enclave. The
encrypt method encrypts the plaintext argument with the



secret key and returns the corresponding cipher text to the
external environment. The return value of a gateway method
should not be influenced by secret information.

d) Operator declassify: The declassify unary op-
erator downgrades a secret value into a public value. In
Listing 1, the value in cipher (Line 8) is influenced by the
secret field key. Hence, cipher is considered sensitive and
cannot be returned to the non-enclave environment. However,
the encryption can be considered secure as an observer cannot
learn useful information by observing only the ciphertext. The
declassify operator is used to control the release of sensitive
information by explicitly declassifying a secret value provided
it can be trusted (see the following paragraph).

e) Operator endorse: The endorse operator endorses
an untrusted value into a trusted one. A declassification can get
triggered based on the specific value of a variable. As a result,
a malicious user can influence the value of a variable to trigger
the declassification. JE ensures that only trusted values are
declassified and application of the declassify operator does
not depend on untrusted values. By default, the arguments
to the gateway methods are considered untrusted as they are
received from the non-enclave environment. In Listing 2, the
gateway method encrypt accepts the plaintext argument
from the non-enclave environment. We explicitly trust the
identifier plaintext (Line 9). As a result, plaintextE is
a trusted version of plaintext and the declassification no
longer depends on an untrusted variable. The program in
Listing 2 is valid because the var1 identifier is declassified
(Line 12) and it is trusted. For this reason, the application
of the declassify operator (Line 12) does not depend on an
untrusted value. Also, the code in Listing 1 is invalid as the
identifier cipher being declassified (Line 8) is untrusted.

B. Compilation phases

The first step of the compilation process involves automati-
cally translating a JE program into an equivalent Jif program.
The generated program is verified using the Jif compiler. If
the compilation succeeds, the code for data exchange between
the enclave and non-enclave environments along with the
initialization code is added. Finally, two JARs corresponding
to each environment are generated. A detailed description of
the compilation steps is provided in the technical report [32].

C. Execution Model

We execute JE programs in two separate JVMs, one running
in the external environment and one within the enclave. By
default, a JE program starts its execution inside the non-
enclave environment. When a program running in the non-
enclave environment calls a gateway method, the correspond-
ing parameters are passed to the enclave-environment and the
called gateway method executes inside the enclave.

When a gateway method is called from the non-enclave
environment, the corresponding arguments are serialized and
copied (deep copy) into the enclave. Hence, this semantics
results in a distinct copy of each argument inside the
enclave. To avoid inconsistent copies of an object in the two

CL ::= class C {f,m} | classEnclave C {f,m}
m ::= methodφ(p){S; return(e)}
S ::= skip | if e then S1 else S2 | S1;S2 | while e do S

x := declassify(e) | x := eG | C.f := eG

e ::= x | v | e.f | e1 ⊕ e2
eG ::= e | e.m(p)

v ::= n | C | unit

Figure 1: Syntax of JE

environments, once a gateway method is called, we prevent
any further usage of all its arguments in the non-enclave
environment.

IV. SECURITY FRAMEWORK

This section presents a security framework for reasoning
about the confidentiality and integrity properties of enclave
programs. We formalize a core of JE by defining the syntax
and semantics (Section IV-A and IV-B). Drawing on IFC, we
present a security model (Section IV-C) with the following
ingredients: a security policy specifying the parts of the
program that contain secret/trusted information, and the parts
that contain public/untrusted information (Section IV-C1); an
attacker model specifying the capabilities of active and passive
attackers (Section IV-C2); a security condition capturing a
semantic characterization of security with respect to the
program semantics, the attacker model, and the security policy.
Finally, we present a security type system that enforces the
security condition in a sound manner (Section IV-D). The full
proofs of our technical results can be found in the technical
report [32].

A. JE Syntax

JE is an imperative language extended with constructs for
static classes, methods and fields as shown in Figure 1. CL
represents the list of class definitions in a program. We write l
for a finite list of elements l1, · · · , ln. We distinguish two types
of classes: normal classes (class) which are executed in the
non-enclave environment and enclave classes (classEnclave)
which are executed in the enclave environment. Each class
is defined with a list of fields f and methods m. We assume
classes C ∈ Class, methods m ∈ Method, and fields f ∈
Field are uniquely identified.

We define a method by the list of formal parameters p and
method body S, and use the annotation φ ∈ {G,NG} to
indicate whether (G) or not (NG) a method is a gateway.
The method body S is a sequence of commands that is
executed when the method is called, followed by return(e)
for the return value of the method. JE distinguishes two
types of expressions, side-effect free expressions e including
variables x ∈ V ars, values v ∈ V al, fields accesses
e.f , and binary operations ⊕, and side-effectful expressions
eG which extend e with method calls e.m(p). Commands
S include standard features such as assignment to class
fields and variables, conditionals, loops, and sequencing.



Command x := declassify(e) is semantically equivalent
to an assignment and it is used for declassification. Command
x := eG, assigns the result of evaluating eG to the variable
x. If eG is a method call, e.g., the assignment x := C.m(p)
denotes a call to method m of class C with actual parameters p,
and stores the return value in variable x. Similarly C.f := eG
assigns the result of evaluating eG to the field f of class C.
Values are integers n ∈ Z, class identifiers or unit.

B. JE Operational Semantics

We define the (big-step) operational semantics of JE . A
configuration 〈S,M,H〉 consists of a command S, a memory
M = V ars→ V al mapping variables to values, and a heap
H = Class×Field→ V al mapping class and field identifiers
to values. A state σ = 〈M,H〉 is a pair of a memoryM and a
heap H. An observation trace t is a (possibly empty) sequence
of events β ∈ V al, and t1.t2 denotes trace concatenation.

We use judgments of the form α `δ 〈S,M,H〉 ⇓tM′,H′
to denote that a configuration 〈S,M,H〉 evaluates to memory
M′ and heap H′ in execution mode α ∈ {N,E} with
static mode δ = Class ∪ V ar → {N,E}, and produces
an observation trace t. We write α `δ 〈S,M,H〉 ⇓ M′,H′ if
the observation trace is empty and α `δ 〈S,M,H〉 ⇓t _
to ignore the final state. We use modes to distinguish
between the enclave environment (E) and the non-enclave
environment (N ). An execution mode α indicates the current
execution environment of a configuration, while a static
mode δ associates a class identifier or a variable with the
execution environment it was assigned to, statically. Abusing
notation, we write α `δ 〈S; return(e),M,H〉 ⇓ M,H.v for
commands that yield a value v, via the return command. To
simplify the presentation, we assume that the sets of variable,
field, and class identifiers of the enclave environment and
non-enclave environment are disjoint. An initial configuration
starts in the non-enclave execution mode and it executes a
sequence of commands S0 from an initial state 〈M0,H0〉,
i.e., N `δ 〈S0,M0,H0〉.

The semantics of expressions, Figure 2, is mostly standard.
We use judgments of the form α `δ 〈eG,M,H〉 ⇓β
〈v,M′,H′〉 to denote that an expression eG evaluates to
value v, memory M′, and heap H′ in state 〈M,H〉, ex-
ecution mode α, static mode δ, and it emits the event β.
Rule METHOD interacts with the execution semantics of
commands to execute the method body, hence it can potentially
alter the execution state. We use the auxiliary functions
getMethod : Class ×Method → m to extract a method
definition, and fields : Class→ ℘(Field) extract the set of
fields of class C. We writeM[x 7→ v] to denote a memoryM
with variable x assigned the value v. Similarly, H[(C, f) 7→ v]
denotes a heap H with field f of class C assigned the value v.
The full semantics of expressions is reported in the technical
report [32].

Rule FIELD ACCESS evaluates expression e to a class
identifier C, ensures that the execution mode and static mode
are the same, and performs a lookup of its field f in the heap

H. It then returns the resulting value v as well as the memory
and heap, which are unchanged.

Rule METHOD evaluates expression e to a class identifier
C and uses the getMethod function to get the definition of
its method m. Next, it checks that either the execution mode
and static mode are the same (α = δ(C)) or that the execution
mode is non-enclave (N ), the static mode is enclave (E), and
m is a gateway method (α = N ∧ δ(C) = E ∧ φ = G). This
condition ensures that only methods from the classes that
have the same static mode as the current execution mode can
be called, with the exception that the non-enclave execution
mode can call the gateway methods of enclave classes. For the
latter, our rules enforce the copy semantics in a call-by-value
fashion. The rule substitutes the actual parameters for the
formal parameters and executes the method body, returning
a value. Finally, if the method is a gateway call, the emitted
event is the return value v, otherwise the empty event ε.

Figure 3 provides an excerpt of evaluation rules for JE
commands. The full set of rules can be found in the technical
report [32]. Rule STORE updates the field in the heap with
the associated value and checks that α = δ(C) to ensure
that execution mode, and the static mode of class C are
the same. The event that STORE emits is equal to the event
emitted during the evaluation of expression eG. Rule RETURN
evaluates the expression in the current state and returns the
associated value.

C. Security Model

1) Security Policy: JE adopts security labels to specify
application-level policies as information flow policies. A
security label ` is a tuple 〈`C , `I〉 of a confidentiality label `C
and an integrity label `I . We use two levels, Public (P) and
Secret (S), for confidentiality, and two levels, Trusted (T) and
Untrusted (U), for integrity. Intuitively, for confidentiality, data
from Secret sources should not flow to Public sinks unless it is
explicitly declassified by the developer, and, for integrity, data
from Untrusted sources should not flow to Trusted sinks unless
it is explicitly endorsed by the developer. These requirements
are reflected by the ordering relation between security labels,
namely P < S and T < U. The product lattice L lifts the
constraints to an ordering relation over label pairs such that
`1 v `2 iff `1C v `2C and `1I v `2I . The lattice L defines the
join `1t `2 and meet `1u `2 operators to compute least upper
bound and greatest lower bound of two labels, respectively.
A security policy is then defined by an assignment of security
labels to variables, classes and fields of an JE program.

2) Attacker Model: We use the security labels to define the
view of the memory and heap from the attacker’s perspective.
In our setting, the attacker is at level 〈P,U〉 and it can observe
all of initial program state (i.e., the initial memory and the
initial heap) that is labeled as public P. This is because an
attacker has full control of the non-enclave state and it is
allowed to learn any public data of the enclave state. We
assume that each variable, class, and field has an associated
security label from the lattice L as defined by a security
mapping Γ : (V ar ∪ Class ∪ Field) → L. We then define



FIELD ACCESS
α `δ 〈e,M,H〉 ⇓ 〈C,M,H〉 α = δ(C) v = H(C, f)

α `δ 〈e.f,M,H〉 ⇓ 〈v,M,H〉

METHOD

α `δ 〈e,M,H〉 ⇓ 〈C,M,H〉 methodφ(p){S; return(e)} = getMethod(C,m)((
α = δ(C)

)
∨
(
α = N ∧ δ(C) = E ∧ φ = G

))
M∗ =M[pi 7→ σ(qi)] i = 1, ..., |p| δ(C) `δ 〈S; return(e),M∗,H〉 ⇓ M∗

′
,H′ . v

M′ =M∗
′
\ [pi] i = 1, ..., |p| (α = δ(C)⇒ β = ε) (α = N ∧ δ(C) = E ∧ φ = G⇒ β = v)

α `δ 〈e.m(q),M,H〉 ⇓β 〈v,M′,H′〉

Figure 2: Excerpt of JE expression semantics

STORE
α `δ 〈eG,M,H〉 ⇓β 〈v,M′,H′〉 α = δ(C) H′′ = H′[(C, f) 7→ v]

α `δ 〈C.f := eG,M,H〉 ⇓β M′,H′′
RETURN

α `δ 〈e,M,H〉 ⇓ 〈v,M,H〉
α `δ 〈return(e),M,H〉 ⇓ M,H . v

Figure 3: Excerpt of JE command semantics

indistinguishability over pairs of program states for a security
mapping Γ and an attacker at security level A = 〈P,U〉.

Definition 1 (State Indistinguishability). Two memories M1

and M2 are indistinguishable for the attacker A (written
M1 =A M2) iff ∀x. δ(x) = N , M1(x) = M2(x), and
∀x. δ(x) = E such that Γ(x) = 〈P,−〉, M1(x) =M2(x).

Two heaps H1 and H2 are indistinguishable for the attacker
A (written H1 =A H2) iff ∀C. δ(C) = N, ∀f ∈ fields(C),
H1(C, f) = H2(C, f) and ∀C. δ(C) = E,∀f ∈ fields(C)
such that Γ(C.f) = 〈P,−〉, H1(C, f) = H2(C, f).

Two program states σ1 = 〈M1,H1〉 and σ2 = 〈M2,H2〉
are indistinguishable for the attacker A (written σ1 =A σ2)
iff M1 =AM2 and H1 =A H2.

Intuitively, two indistinguishable memories assign the same
value to the public variables inside and outside of enclave.
Similarly, two indistinguishable heaps assign the same value
to all of the fields of non-enclave classes and the public fields
of enclave classes.

As secret values are stored inside the enclave, the only way
for an attacker to learn secret information is by observing the
return values of gateway methods. In fact, the attacker obser-
vations are captured by our semantics in Figure 3 via traces t
and events β. Therefore, we can define indistinguishability for
program executions by requiring that any two indistinguishable
initial states produce the same observation traces. This implies
that an attacker cannot discriminate the two initial states, thus it
cannot learn secret information from the enclave environment.

Definition 2 (Execution Indistinguishability). Let S be a
JE program and σ1 and σ2 be two initial states such that
σ1 =A σ2. Two executions are indistinguishable (written
N `δ 〈S, σ1〉 ≈A N `δ 〈S, σ2〉) if N `δ 〈S, σ1〉 ⇓t1 _ and
N `δ 〈S, σ2〉 ⇓t2 _ then t1 = t2.

In line with existing works [29], execution indistinguisha-
bility ignores information leaks that are due to program (non)
termination. The definition ensures security w.r.t. a passive
non-enclave attacker that observes only the results of gateway
method calls. In particular, it rejects all programs that leak

secret information to the non-enclave environment. As such
condition can be restrictive for most practical scenarios (see
Section III for examples), developers resort to various forms
of declassification operations to release secret information in
a controlled manner. We refer to prior works for an overview
of various dimensions of declassification [33]. In our setting,
declassification can be dangerous as it can be abused by an
active attacker to release secret information in a way that it
was not intended by the developer [20]. Next, we define the
attackers that are relevant in the context of enclave programs.

3) Passive and Active Attackers: We consider three types
of attackers: the passive attacker (PA), the havoc active
attacker (HAA) limited to modifying parameters passed
to gateway calls, and the havoc reordering active attacker
(HRAA) capable of controlling the order and frequency in
which gateway methods are called. Both active attackers are
reasonable in our context as the attacker fully controls the non-
enclave environment. We use the PA attacker as a reference
model to show that the HAA attacker and the HRAA attacker
do not learn more secret information than the PA attacker.

The PA does not intervene in the execution of the program,
it just observes observation traces (as in Figure 3) to learn
secret information from the enclave. The active attackers
can influence the execution. The HAA attacker can modify
the non-enclave state and hence the parameters passed to
gateway methods, thus modifying the behavior of the program
executing inside the enclave. This may change the behavior of
the program in a way that leaks information about the enclave
secrets, e.g., by abusing declassification operations that were
intended in the context of a PA attacker. We illustrate the
issue via an example inspired by Askarov and Myers [21].

The program in Listing 3 contains a gateway method foo
whose return value depends on the time parameter. The
intention of the developer, who assumes a PA attacker, is to
declassify secretV al only after the releaseT ime has elapsed.
This is implemented by comparing the time in which method
call was issued with the predefined releaseT ime (Line 10).
Yet, an HAA attacker can arbitrarily change the value of time
and control the release of information via declassification.



Listing 3: HAA Attacker
1 @Enclave
2 class FooClass {
3

4 @Secret static int secretVal;
5 static int releaseTime = 2025
6

7 @Gateway
8 public static int foo(int time) {
9 int res = 0;

10 if (time >= releaseTime)
11 res = declassify(secretVal);
12 else
13 res = 0;
14

15 return res;
16 } }

Listing 4: HRAA Attacker
1 @Enclave
2 class FooClass {
3

4 @Secret static int secret1, secret2;
5 static boolean releaseTrigger = false;
6

7 @Gateway
8 public static void bar() {
9 releaseTrigger = true;

10 }
11 @Gateway
12 public static int foo() {
13 int res = 0;
14 if (releaseTrigger) {
15 releaseTrigger = !releaseTrigger;
16 res = declassify(secret1); }
17 else {
18 releaseTrigger = !releaseTrigger;
19 res = declassify(secret2); }
20

21 return res;
22 } }

Listing 5: Delayed Declassification
1 @Enclave
2 class FooClass {
3

4 @Secret static int secretVal;
5

6 @Gateway
7 public static int foo(int input) {
8 int x = declassify(secretVal);
9 int l = 0;

10 if (input > 0)
11 l = x;
12 else
13 l = 7
14

15 return l;
16 } }

This example motivates the need for a security condition that
rejects scenarios where an active attacker learns more secret
information than a passive attacker.

To model the active capability of the HAA attacker, we
introduce program holes [•] [20]. Holes represent program
contexts where an HAA attacker can insert an untrusted
code a to modify the program’s state. Because the only
way an attacker can affect the execution of enclave code
is via gateways, we extend our program syntax by adding
[•];x := e.m(p) and [•];C.f := e.m(p), and define the active
attacks.

Definition 3 (JE program with holes). A program with holes
S[−→• ] is defined by extending the syntax in Figure 1 as follows:

S[−→• ] ::= . . . | [•];x := e.m(p) | [•];C.f := e.m(p)

where m is a gateway method.

An HAA attacker can execute any untrusted code a in a
hole before method calls. However, this code can only contain
variables, classes, and fields in the non-enclave environment
which are by definition public and untrusted. We define the
attacker’s code as follows:

a ::= skip | a1; a2 | q := e (where q ∈ p) (1)

While an HAA attacker can inject arbitrary untrusted code
in the non-enclave environment, we argue that the definition
above captures the most powerful attack strategies of HAA
attacker.

Lemma 1. The attack code definition presented in 1, captures
the most powerful attack strategies available to an HAA
attacker, who controls the non-enclave environment.

We write S[−→a ] for a program under an HAA attack −→a . In
this setting, a passive attack can be modeled as S[

−−→
skip].

An HRAA attacker controls both the code and data memory
outside the enclave. Hence in addition to the HAA attack
capability, an HRAA attacker can change the order and
frequency of gateway method calls issued from the non-enclave
environment. This can cause information leaks as the (attacker-

controlled) order and frequency of gateway calls may influence
the values returned to the non-enclave environment. Listing 4
illustrates the problem. Consider the non-enclave program
FooClass.bar(); FooClass.foo(). The intended order
of issuing gateway methods is bar();foo(), hence this
program is secure with respect to an HAA attacker. secret1
is always going to be declassified, and the resulting trace
depends on its value. However, an HRAA attacker that controls
the code memory outside the enclave can change the order
of gateway calls to foo();bar() and learn the declassified
value of secret2.

A similar argument applies to calling gateway methods
multiple times. For instance, if a gateway was intended to
be called only once, calling it more than once might leak
sensitive information. We revisit Listing 4 to illustrate the prob-
lem. Consider the non-enclave program FooClass.foo()
revealing the value of secret1. An HRAA attacker can
instead call FooClass.foo();FooClass.foo() and learn
the declassified value of secret2.

Since the HRAA attacker has full control over the non-
enclave code and memory, and the secrets reside only inside
the enclave, we model them as sequences of gateways calls.

Definition 4 (Program under HRAA control). We define the
program under HRAA control as a sequence of gateway calls:

S′[−→• ] ::= S′1[−→• ];S′2[−→• ] | [•];x := C.m(p)

where m is a gateway method defined in S[−→• ].

In this model, the attack definition of 1 will remain
unchanged, indicating that HRAA attacker subsumes the power
of HAA attacker.

Lemma 2. The attacker code defined in 1, captures the most
powerful attack strategies available to the HRAA attacker.

4) Security Condition: In our setting, programs use de-
classification to release secret information in a controlled
manner. Intuitively, a program is secure if an active attacker
cannot learn more secret information than a passive attacker.
Drawing on the idea of robust declassification [20], we present



robustness, a security condition that formalizes this intuition.

Definition 5 (Robustness under HAA). Program S[−→• ] is
robust w.r.t an HAA attacker A if for all σ1, σ2,−→a 1,

−→a 2

N `δ 〈S[−→a 1], σ1〉 ≈A N `δ 〈S[−→a 1], σ2〉 ⇒
N `δ 〈S[−→a 2], σ1〉 ≈A N `δ 〈S[−→a 2], σ2〉

Robustness holds whenever for an attack vector −→a and two
indistinguishable initial states σ1, σ2, if the program S[−→a 1]
satisfies execution indistinguishability (definition 2), then for
another attack vector −→a 2, the program S[−→a 2] also satisfies
execution indistinguishability. In other words, the attacker
observations of S[−→a 2]’s observation traces do not reveal any
secrets apart from what the attacker already knows by the
observation traces of the program S[−→a 1]. The PA attacker is
captured by executions of the program S[

−−→
skip].

We extend robustness to capture HRAA attackers.

Definition 6 (Robustness under HRAA). Program S[−→• ] is
robust w.r.t an HRAA attacker A if for all σ1, σ2,−→a 1,

−→a 2

and for all S′[−→• ]:

N `δ 〈S[−→a 1], σ1〉 ≈A N `δ 〈S[−→a 1], σ2〉 ⇒
N `δ 〈S′[−→a 2], σ1〉 ≈A N `δ 〈S′[−→a 2], σ2〉

This definition ensures that the HRAA attacker does not
learn more information by changing the order and frequency
of gateway calls. Observe that if S′[

−→
a′ ] triggers an execution

that was not possible S[−→a ], and that execution’s return value
depended on some declassified secret, the active power may
enable the HRAA attacker to learn information that they
would not have learned originally. In Listing 3, the pro-
gram S[−→a ] ::= [a1];FooClass.bar(); [a2];FooClass.foo()

is not robust under HRAA because the program S′[
−→
a′ ]

::= [a′1];FooClass.foo(); [a′2];FooClass.bar() enables the
HRAA attacker to reveal the declassified value of secret2.
A similar argument applies to calling gateway methods that
were defined in S[−→• ] but were never called. As expected, this
definition is stronger than Definition 5.

5) Delayed Declassification: While our security condition
extends the definition of robust declassification [20] to the
setting of realistic enclave attackers, there are some key
differences pertaining to traces and attacker observations.
Robust declassification considers every assignment to public
variables as immediately visible to the attacker, because it
defines the observations as projection over the public part
of the memory. This definition does not reflect the enclave
attacker model, because TEEs encrypt the entire enclave
memory, so even if a public variable is modified inside the
enclave, it is not visible to the attacker unless it is written to
the non-enclave memory. This motivates our use of a trace-
based observation model as generated by the return values of
gateway method calls.

This model poses additional challenges with handling of
declassification policies. For example, the program in Listing 5
satisfies robust declassification because the attacker input

neither affects the decision to declassify nor the declassified
value itself. This is achieved by making the value in variable
x observable to the attacker immediately. However, in our
model, the declassified value in x will not be visible to the
attacker until it is returned by the gateway method. Because
the attacker controls the input and therefore the assignment
in line 11, this results in controlling the decision to declassify
the secret value. Hence, the program is not robust. In fact, for
attack vectors a ::= input := 0 and a′ ::= input := 1, our
definition of robustness will correctly reject the program. We
dub this concept delayed declassification. Observe that delayed
declassification is orthogonal to the well-known Where and
What dimensions of declassification [33] and it appears as
result of the trace-based observation model.

D. Security Type System

This section presents a security type system to enforce
robustness. In line with the enclave attacker model, the
program from the non-enclave environment is public and
untrusted, while program from the enclave environment is
trusted and its input data can be labeled by the developer as
either public or secret. We label secret fields with 〈S,T〉 as
they contain sensitive information and are protected by the
enclave. The security label of the arguments of a gateway
method is defaulted to 〈P,U〉 and while the return parameter
is labeled as 〈P,T〉 or 〈P,U〉.

The goal of our type system is to ensure robustness against
the active attackers. To achieve this, the type system checks
that the decision to declassify a secret, or to return it, is not
influenced by untrusted non-enclave data, thus ensuring that
the attacker cannot control the decision to release secret data.
The security type system enforces the Where dimension of
declassification for a PA attacker [33] and it has been proved
sound with respect to the security condition of gradual release
[34]. We extend the type system to additionally account for
active attacks in our setting and prove it sound for robustness.
This has the advantage of reusing existing verification efforts
via security type systems, which assume a PA attacker, and
verifying only on the effect of an active attacker whenever
these programs have been verified for the PA attacker. In our
setting, this may happen whenever a developer partitions an
existing (secure) program to execute with enclaves.

Our security type system uses a typing environment Γ :
(V ar ∪Class ∪ Field)→ L mapping variables, classes, and
fields to security labels from the security lattice L. We also
use another environment Π : (V ar ∪ Class ∪ Field) → B
that maps variables, fields, and classes to boolean flags. A
flag d ∈ B can be true (T ) or false (F ), and is used to track
the propagation of declassified values. Initially, every variable
and field has the flag initialized to false and the flag is set
to true whenever they store a value that may be affected by
declassification. We define the ordering relation F < T on
flags, which will be useful in the sub-typing and method rules.

The label of every variable, field, and class in our setting, is
a tuple consisting of a security label and a flag (`, d). We use
indexes ` and d to access elements of this tuple. e.g., pc` will



show the security label of pc. Methods are typed in isolation
using type signatures of the form

(
Γ−,Π− pc′ Γ+,Π+

)
(`,d)

which require a environments Γ− and Π− before the method is
invoked, environments Γ+ and Π+ after the method invocation,
the label of its return value (`, d), and the program counter
label pc′ capturing the lower bound on method’s side-effects
[16]. The typing judgments for expressions are of the form
Γ,Π `δ eG : τ , meaning that in mode δ, and environments Γ
and Π, an expression eG has the type τ . If the expression eG
is a method, then τ is a method type, otherwise τ is a type
(`, d) representing the security label of e. Similarly, the typing
judgments for commands have the form pc,Γ,Π `δ S : Γ′,Π′

where Γ and Π are the environments before, and Γ′ and Π′

are the environments after the execution of command S, δ is
the static, and pc is the program counter label used to prevent
implicit flows. The judgment for the return command is of
the form pc,Γ,Π `δ return(e) : Γ,Π . (`, d) to capture the
security label ` and the flag d of the returned value.

Figure 4 depicts an excerpt of the typing rules for ex-
pressions. The full list of rules is reported in the technical
report [32]. The only non-standard rule here is T-METHOD.
Rule T-METHOD checks that method’s body S; return(e) is
well-typed under pc′, Γ−, Γ+, Π−, and Π+ and it returns the
label (`, d) of the result.

Figure 5 presents a few interesting rules for commands;
we refer to the technical report [32] for the full list. In our
type system, variables are flow-sensitive (see rule T-ASSIGN
in the technical report [32]), while fields are flow-insensitive,
i.e., their security label is defined via annotations. In fact, rule
T-STORE ensures that the join of the security labels of pc
and expression e is at least as restrictive as the label of field
C.f . Moreover, the rule ensures that if the security label of
`1t`2tpc` is secret 〈S,−〉, the store is defined in the enclave,
and it ensures that if the flag of e is true, this command can
only be executed in a trusted context. This is to prevent
untrusted input from controlling the propagation and release
of declassified values. Finally, even though C.f ’s security
labels are flow-insensitive, its flag is not, and it is updated to
the disjunction of the flags of e and pc. This rule also updates
the flag of class C, so if a class has a field affected by a
declassified value, the whole class is going to be flagged true.
The rule T-STORE is only for side-effect free expressions (i.e.,
e). There is also e.m(p) that combined with Store can act
as a method call or a gateway method call. Rule T-STORE-
CALL and T-STORE-GATEWAY-CALL type check method
calls and gateway method calls, respectively. Similarly, type
checking assignments is broken into three rules, T-ASSIGN,
T-ASSIGN-CALL, and T-ASSIGN-GATEWAY-CALL.

Rule T-DECLASSIFY ensures that only trusted data is
allowed to be declassified ` v 〈S,T〉 and declassification can
only happen in public and trusted context pc` v 〈P,T〉. This
prevents attacker-controlled untrusted data from influencing
the decision to declassify secret information. The security
label of variable x will be 〈P,T〉 and its flag will be true T .

Rule T-RETURN sets the security label of the returned

value to the join of the security labels of program context and
the expression. This is to prevent the implicit flows that may
happen when returning in a secret context. Additionally, if
the expression e’s flag is true, return can only be executed in
a trusted context. This is to prevent attacker from affecting
the decision to return a declassified value.

Rule T-STORE-GATEWAY-CALL handles the type checking
of gateway methods call from a store. The security labels of
gateway parameters are explicitly defined in Γ− and must
have the 〈P,U〉 security label (∀p ∈ p. Γ−(p) = 〈P,U〉), and
their flag (defined in Π−) should be false ∀p ∈ p.Π−(p) = F .
The rule ensures that the gateway can only return public
values (`2 v 〈P,U〉), the labels of actual parameters are
less restrictive than the predefined labels of formal parameters
Γ(qi) v Γ−(pi), and the method’s typing environment is satis-
fied (∀y ∈ dom(Γ−).Γ(y) v Γ−(y)). Additionally, the typing
environment after type checking the method body should
respect the method’s predefined post typing environment
(∀y ∈ dom(Γ+).Γ+(y) v Γout(y)), while ensuring that the
type of identifiers other than those used by the method remains
unchanged (∀y ∈ dom(Γ) \ dom(Γ+).Γ(y) = Γout(y)).
Similar conditions apply to Π environment. At last, the rule
updates the flag of field C.f to false, so even a declassified
value, after returning from a gateway method has a false flag.

To illustrate our type system, we revisit the example of
Listing 3. The type system rejects this program because the
declassify operator can only be used in a trusted program
context pc. Rules T-OP and T-IF-ELSE set the pc security label
to the join of the security labels of time and releaseT ime.
Since time has security label 〈P,U〉 (as it comes from outside
of the enclave), and releaseT ime has security label 〈P,T〉
(as it comes from the enclave), we have that pc` = 〈P,U〉 t
〈P,T〉 = 〈P,U〉. Next, rule T-DECLASSIFY does not allow
the declassification since pc` 6v 〈P,T〉.

We prove that our security type system enforces robustness
for the HAA attacker.

Theorem 1. If pc,Γ,Π `δ S[−→• ] : Γ′,Π′ then S[−→• ] satisfies
robustness under HAA.

We now show how it can be extended with minimal changes
to enforce robustness for HRAA attackers. The additional
power of HRAA attacks comes from the ability to control the
order and frequency of gateway calls. Whenever a gateway
call modifies trusted identifiers inside the enclave, this can be
used to influence declassification operations that are performed
by another method. This can be prevented by computing the
set of shared identifiers Σ containing all global variables
and fields that are assigned to in at least one method and
accessed in at least one method. (i.e., Σ contains all global
variables and fields that are used and modified in one or more
gateways methods) We compute Σ in a preprocessing step
up to reaching a fixed point. We can then use the typing
rules of Figures 4 and 5 under the constraint that the initial
environment considers the integrity label of every variable and
field in Σ as untrusted. i.e., ∀ x ∈ Σ. Γ0[x 7→ 〈Γ0(x)C ,U〉]
and ∀ C.f ∈ Σ. Γ0[C.f 7→ 〈Γ0(C.f)C ,U〉].



T-INT
Γ,Π `δ n : (〈P,T〉, F )

T-OP
Γ,Π `δ e1 : (`1, d1) Γ,Π `δ e2 : (`2, d2)

Γ,Π `δ e1 ⊕ e2 : (`1 t `2, d1 ∨ d2)

T-METHOD
methodφ(p){S; return(e)} = getMethod(C,m) pc′,Γ−,Π− `δ S; return(e) : Γ+,Π+ . (`, d)

Γ,Π `δ C.m(p) :
(

Γ−,Π−
pc′

Γ+,Π+
)
(`,d)

Figure 4: Excerpt of typing rules for expressions

T-STORE

Γ,Π `δ C.f : (`1, d1)

Γ,Π `δ e : (`2, d2) `2 t pc` v `1 `1 t `2 t pc` = 〈S,−〉 ⇒ δ(C) = E d2 = T ⇒ pc` = 〈−,T〉 d′ = d2 ∨ pcd

pc,Γ,Π `δ C.f := e : Γ,Π
[
C.f 7→ d′, C 7→ Π(C) ∨ d′

]
T-DECLASSIFY

Γ,Π `δ e : (`, d) ` v 〈S,T〉 pc` v 〈P,T〉 δ(x) = E

pc,Γ,Π `δ x := declassify(e) : Γ
[
x 7→ ` u 〈P,T〉

]
,Π

[
x 7→ T

] T-RETURN
Γ,Π `δ e : (`, d) d = T ⇒ pc` = 〈−,T〉

pc,Γ,Π `δ return(e) : Γ,Π . (pc` t `, d)

T-STORE-GATEWAY-CALL

Γ,Π `δ C.f : (`1, d1) Γ,Π `δ C′.m(p) :
(

Γ−,Π−
pc′

Γ+,Π+
)
(`2,d2)

δ(C) = N δ(C′) = E

`2 v 〈P,U〉 ∀p ∈ p.Γ−(p) = 〈P,U〉 ∀p ∈ p.Π−(p) = F `2 t pc` v `1 Γ(qi) v Γ−(pi) i = 1...|p|
Π(qi) = Π−(pi) i = 1...|p| ∀y ∈ dom(Γ−).Γ(y) v Γ−(y) ∀y ∈ dom(Γ+).Γ+(y) v Γout(y)

∀y ∈ (dom(Γ) \ dom(Γ+).Γ(y) = Γout(y) ∀y ∈ dom(Π−).Π(y) v Π−(y)

∀y ∈ dom(Π+).Π+(y) v Πout(y) ∀y ∈ (dom(Π) \ dom(Π+).Π(y) = Πout(y)

pc,Γ,Π `δ C.f := C′.m(q) : Γout,Πout
[
C.f 7→ F

]
Figure 5: Excerpt of typing rules for commands

The intuition is that by considering shared identifiers as un-
trusted, we enable the security type system to reject programs
that use these identifiers to declassify information (explicitly or
implicitly) and return it via a gateway method. For example,
the program in Listing 4 is rejected by our type system.
After the preprocessing phase, Σ = {releaseTrigger} since
releaseTrigger is assigned to in one method call and
accessed in another. By assigning the security label 〈P,U〉
to releaseTrigger, rule T-DECLASSIFY (Line 16) will fail
since declassification is not allowed in an untrusted context.

Recall from last section that if different program executions
call different gateways and those gateways return declassified
values, the HRAA attacker can learn more by calling the
gateways that were not called in the original program. In
order to prevent this, we add another step to the type checking
process to ensure that all gateways which declassify secret
values are called in all possible executions of the (non-enclave)
program.

This process is performed in several steps:

1) Identify the set of all the gateway methods in S[−→• ]
denoted by GD such that their return value’s flag is true
(i.e., Γ,Π `δ C.m(p) : (−)(−,T )).

2) Enumerate the paths of the program and extract the set
of gateway calls along those paths. This is achieved by
a depth-first traversal of the program’s graph. We use
pathsGW (S[−→• ]) to denote the set of all possible paths
of S[−→• ], and pathGWi for the set of gateway calls in
path i.

3) Check that GD is a subset of all of the possible paths

of S[−→• ]. In other words:

GD ⊆ pathGWi ∀i ∈ pathsGW (S[−→• ])

This process is performed after calculating Σ and type
checking methods in isolation, but before type checking the
program itself. If the above process fails, we reject the program
as not robust against HRAA attacker. This requirement reflects
the power of the HRAA attacker outside the enclave, rejecting
programs that do not call all declassifying gateways. To
improve permissiveness and security, such programs can
be moved to the enclave and exposed to the non-enclave
environment as a single gateway method.

We remark that our enforcement accepts programs with
noninterfering runs that do not always declassify informa-
tion. Listing 6 presents a program with both interfering
and noninterrfering runs. The program satisfies robustness
(Definition 6) and is also accepted by the type system. In
fact, if variable trustedLow (Line 4, a public and trusted
variable) is set to true, only noninterfering computations
will be executed and an HRAA attacker program such
as [choice=v];ComputeArray.compute(choice); will
observe the result “Done with computation" + choice.
Otherwise, if trustedLow is set to false, an interfering run
will be executed and the attacker will observe the declassified
average value.

This example demonstrates that even though our type system
requires calling all of the declassifying gateways along all
program’s executions, it does not mean that all of the runs of
the program are necessarily interfering.

We prove soundness of the security type system with respect
to the HRAA attacker.



Listing 6: Noninterfering Runs under HRAA
1 @Enclave
2 class ComputeArray {
3

4 static boolean trustedLow;
5 @Secret static int[] array;
6

7 @Gateway
8 public static String compute(int choice) {
9 int avg = computeAvg(array);

10 String res = 0;
11 if (trustedLow) {
12 if (choice == 1) {
13 computation1(array); //noninterfering
14 } else if (choice == 2) {
15 computation2(array); //noninterfering
16 } else if (choice == 3) {
17 computation3(array); //noninterfering
18 }
19 res = "Done with computation" + choice;
20 }
21 }
22 else {
23 res = String.valueOf(declassify(avg));
24 }
25 return res;
26 } }

Theorem 2. If pc,Γ,Π `δ S[−→• ] : Γ′,Π′ with regard to Σ
and GD, then S[−→• ] satisfies robustness under HRAA.

Use case for the HRAA attacker Our enforcement mech-
anism for the HRAA attacker requires a program to call all
gateways that declassify secret information in any execution
of a program. While this condition may seem restrictive, it
is necessary in order to ensure that an attacker as powerful
as HRAA cannot manipulate the program to tamper with
declassification in unintended ways.

We identify the setting of IoT app platforms as a promising
use case for enforcing security against the HRAA attacker [35].
IoT apps allow users to run simple trigger-action apps in cloud-
based IoT platforms to seamlessly connect their IoT services
and devices. Upon the triggering of an event, e.g., "EZVIZ
camera senses motion at home", the app executes code to
perform an action, e.g., "Send an email with the camera
stream". Currently, the users have to trust the cloud provider
with the sensitive information of their services and devices
to run apps on their behalf. TEEs can help executing user
apps securely in an untrusted IoT cloud platform and protect
against the HRAA attacker. Specifically, the user can leverage
enclaves to securely connect their services and smart devices,
e.g., Email and EZVIZ camera, via authentication tokens
(using code patterns similar to Listing 9) and use these tokens
to execute trigger-action automations via gateway methods
that simply transfer data between services and devices, and
do not declassify sensitive information. In this setting, only
the authentication gateway declassifies sensitive information,
thus making these programs amenable to verification by our
type system.

V. ENDORSEMENT AND NONMALLEABLE ATTACKS

A. Endorsement

We extend our security framework to accommodate explicit
endorsement of untrusted information coming from the
non-enclave environment via gateway calls. This enables a

developer to mark untrusted expressions as trusted, explicitly,
to indicate that the security policy should be insensitive to their
value. Following the approach of Askarov and Myers [21],
we extend the syntax and semantics of JE with command
x := endorseη(e). Each endorsement command has a unique
label η, and produces an endorsement event endorse(η, v),
which records the label η along with the endorsed value v.

ENDORSE

E `δ 〈e,M,H〉 ⇓ 〈v,M,H〉
δ(x) = E M′ =M[x 7→ v]

E `δ 〈x := endorseη(e),M,H〉 ⇓endorse(η,v)M′,H

We define irrelevant attacks as the set of attacks that are
endorsed, and therefore can be excluded from the set of
attacks used in definition 5. Using this concept, we argue that
definition 5 should only hold for relevant attacks. Given a
program S[−→• ], starting state σ, and attacker vector −→a which
produces trace t ( i.e., 〈S[−→a ], σ〉 ⇓t), relevant attacks, denoted
by Ω(S[−→a ], σ), are the attacks that lead to the same sequence
of endorsement events as in t.

We define relevant attacks by using irrelevant traces, which
given trace t, are the set of all traces that agree with t on some
prefix of endorsement events until they necessarily disagree
on some endorsement. Formally:

Definition 7 (Irrelevant Traces). Given a trace t, where
endorsements are marked as endorse(ηj , vj), define a set
of irrelevant traces based on the number of endorsements in t

ψi(t) = {t′ | t′ = k.endorse(ηi, v
′
i).k
′}

where k is a prefix of t′ with i− 1 events all of which agree
with endorse events in t, and vi 6= v′i.

We define ψ(t) ,
⋃
i ψi(t) as a set of irrelevant traces w.r.t.

trace t.

Now, we can define the relevant attacks as the set of attacks
that do not lead to irrelevant traces.

Definition 8 (Relevant Attacks). Given a program S[−→• ],
starting state σ, and attacker vector −→a such that 〈S[−→a ], σ〉 ⇓t,
relevant attacks Ω(S[−→a ], σ) are defined as:

Ω(S[−→a ], σ) = {a′ |〈S[
−→
a′ ], σ〉 ⇓t′ ∧ t′ 6∈ ψ(t)}

Using the definition relevant attacks, we can redefine the
robustness property. This new security condition accounts for
the fact that the active effect on endorsed expressions does
not matter.

Definition 9 (Robustness with Endorsement). Program S[−→• ]
is robust w.r.t an HAA attacker A if for all σ1, σ2,−→a 1 and
for all −→a 2 ∈ Ω(S[−→a 1], σ1)

N `δ 〈S[−→a 1], σ1〉 ≈A N `δ 〈S[−→a 1], σ2〉 ⇒
N `δ 〈S[−→a 2], σ1〉 ≈A N `δ 〈S[−→a 2], σ2〉

This definition is similar to the original robustness property,
except that instead of ensuring indistinguishability for all
possible attacks, it only ensures indistinguishability for the



T-ENDORSE
Γ,Π `δ e : (`, d) pc` v 〈P,T〉 δ(x) = E

pc,Γ,Π `δ x := endorseη(e) : Γ
[
x 7→ ` u 〈S,T〉

]
,Π

[
x 7→ d

]
Figure 6: Typing rule for endorse command

relevant attacks, effectively ignoring the influence of irrelevant
attacks.

Figure 6 presents the typing rule for endorsement. Similar
to the T-DECLASSIFY, T-ENDORSE ensures that endorseη(e)
can only be used inside the enclave environment, and en-
dorsement can only occur in a public and trusted context
pc` v 〈P,T〉. This is to prevent attacker-controlled untrusted
data to influence the decision to endorse untrusted information.

Now, we present type soundness to prove that any well-
typed program under the extended type system satisfies the
new robustness property of Definition 9.

Theorem 3. If pc,Γ,Π `δ S[−→• ] : Γ′,Π′ then S[−→• ] satisfies
robustness with endorsement.

We can use a similar approach to model endorsement of
HRAA attacker. However, we have to modify the definition of
relevant attacks to account for the difference between the order
and frequency of endorsement events in S′[−→• ] and S[−→• ].

In the new definition of relevant attacks, we use the unique
endorsement label η to ensure that the value of an endorsement
used in S[−→• ] is equal to the value of that same endorsement
in S′[−→• ] independently of the order and frequency of that
endorsement’s event. We lift the definition of irrelevant traces
and relevant attacks to this new setting.

Definition 10 (HRAA Irrelevant Traces). Given a trace t,
where endorsements are marked as endorse(ηj , vj), define
the set of irrelevant traces as:

ψR(t) = {t′ | ∃ endorse(ηj , vj) ∈ t, ∃ endorse(ηi, vi) ∈ t′.
ηj = ηi and vj 6= vi}

Observe that we need Definition 10 because, if we used
Definition 7, there might be cases where there is an irrelevant
trace t′, but there exist no k with i− 1 events such that all
of its endorse events agree with t, thus, t′ cannot be marked
as irrelevant.

Definition 11 (HRAA Relevant Attacks). Given programs
S[−→• ] and S′[−→• ], starting state σ, and attacker vector −→a
such that 〈S[−→a ], σ〉 ⇓t, the set of relevant attacks w.r.t HRAA
attacker ΩR(S[−→a ], S′[−→• ], σ) are defined as:

ΩR(S[−→a ], S′[−→• ], σ) = {a′ |〈S′[
−→
a′ ], σ〉 ⇓t′ ∧ t′ 6∈ ψ(t)}

Now, using this new definition of relevant attacks, we can
redefine the robustness property w.r.t HRAA attacker.

Definition 12 (Robustness under HRAA with Endorse-
ment). Program S[−→• ] is robust w.r.t an HAA attacker A
if for all σ1, σ2,−→a 1, and for all S′[−→• ] such that ∀−→a 2 ∈

ΩR(S[−→a1], S′[−→• ], σ1)

N `δ 〈S[−→a 1], σ1〉 ≈A N `δ 〈S[−→a 1], σ2〉 ⇒
N `δ 〈S′[−→a 2], σ1〉 ≈A N `δ 〈S′[−→a 2], σ2〉

This definition ensures that in a robust program w.r.t HRAA
attacker, as long as the endorsed values are equal, the result of
execution for all possible orders and frequencies of gateway
calls is indistinguishable.

We can augment the security type system of HRAA
attacker with rule of Figure 6 to enforce robustness. The
following theorem proves that any well-typed program under
the extended type system w.r.t HRAA attacker satisfies the
robustness property of Definition 12.

Theorem 4. If pc,Γ,Π `δ S[−→• ] : Γ′,Π′ with regard to Σ
and GD, then S[−→• ] satisfies robustness under HRAA with
endorsement.

B. Nonmalleable Attacks

Transparent endorsement [36] was introduced as a dual to
robust declassification to prevent attacks arising from trusted
agents endorsing information that their provider could not
have seen. It is a common practice in TEE to have encrypted
data passed to the enclave from outside, if these encrypted
data are labeled secret, then the type system will reject the
program and prevent the malleable attacks. Otherwise, if
these encrypted ciphertexts are labeled public even though
they contain secret plaintexts, then it is possible to receive
an input which its provider cannot read, thus opening up
the system to malleable attacks. While from a technical
perspective transparent endorsement can be accommodated
into our framework along the lines of Cecchetti et al. [36],
we postpone it to future work.

VI. IMPLEMENTATION

In this section, we describe the implementation of JE for
Intel SGX and discuss the gap with our formal model.

The JE runtime operates with two separate execution envi-
ronments, namely the non-enclave environment and enclave
environment, which correspond to two separate Java Virtual
Machines. The communication between the two environments
is achieved using Java RMI [37].

The JE compilation process involves multiple steps. A JE
program is first partitioned, then translated to Jif to check
security, and finally transformed to use RMI communication. A
detailed description of the code transformations implemented
by the JE compiler with a complete step-by-step example is
in the technical report [32].

In addition to the abstractions supported in the formal model,
i.e., static classes and static fields, the implementation supports
additional Java features, including objects and generics.
We convert JE programs that include objects and generics
into equivalent Jif programs. Because the implementation
leverages Jif for label propagation, JE security analysis is
flow-insensitive, in contrast to the security type system, where
the analysis is flow-sensitive on program variables. In the



Listing 7: Password checker
1 @Enclave
2 class PasswordChecker {
3 @Secret static String password;
4

5 @Gateway
6 public static boolean checkPassword(String guess) {
7 return (getHash(guess) == declassify(getHash(password)));
8 } }

implementation, we do not assign any default Jif label to the
local variables, hence, local variables get the security label
of the expression they are initialized with. We remark that
this decision is sound with respect to the language subset
considered in our formal model. In fact, if a (declassification-
free) program is deemed secure by Jif’s flow-insensitive
analysis, then it is also secure with respect to our flow-sensitive
analysis. However, soundness may come at the expense of
additional manual annotations due to the flow insensitivity of
Jif’s analysis.

Another difference with our formal model is the enforce-
ment of delayed declassification. We not do implement the
propagation of the declassify flag (d) used to track delayed
declassification in section IV-C5. Instead, we require that every
declassify operator is used only as a parameter of a return
statement. Since any declassifications are performed within
the scope of the return statement, it simply disallows the
programmer to write code subject to delayed declassification
leaks. We implement this check during the static analysis.

We use the SGX-LKL [38] framework to run the JAR
corresponding to the enclave partition. SGX-LKL uses Linux
Kernel Library [39] to handle system calls from the application
within the enclave. In SGX-LKL, the application JAR, a JVM,
and the necessary LKL binaries are compiled to a single image
file. SGX-LKL loads the image and runs it inside the enclave.

VII. EVALUATION

In this section, we present the evaluation of JE . We
implemented case studies to demonstrate how the design
of JE can address the security requirements of distributed
applications. The goal of the case studies is to exhibit the
features of the language. Additional case studies are provided
in the technical report [32].

A. Password Checker

Listing 7 shows a password checker. The class
PasswordChecker is annotated with the @Enclave annotation.
As a result, during run time, the PasswordChecker class is
placed inside the enclave. The field password is annotated
with the @Secret annotation. The method checkPassword

returns a boolean which is the result of the comparison of
hashes of the field password and parameter guess. The code
snippet without any annotations is a valid Java code. The case
study demonstrates the HAA attacker scenario. The parameter
guess 6 to the gateway method checkPassword is controlled
by the attacker and is considered untrusted.

B. Apache Spark

Spark [40] is a popular processing framework for big data. It
is widely used for machine learning and streaming jobs within
clusters. We show a JE implementation of secure medical
data processing using the enclave and Spark. The goal is to
process encrypted medical records inside the enclave to extract
statistics about the records. Listing 8 represents the code
running outside the enclave. We create a Spark context object
sc (Line 5) and store the encrypted records to be processed
in a JavaRDD (resilient distributed dataset) object recList

(Line 7) which is a distributed data structure to store the data
to be processed. EncRec is an encrypted medical record. The
StatUtil class (Line 12) contains a gateway method process

(Line 17) that accepts an encrypted record, it decrypts it with
the secret key key, and returns the corresponding statistical
information StatRecord. Hence, a medical record is only
decrypted inside the enclave, protecting the medical data. The
code without any annotations is a valid Java program, and
the programmer only needs to add the annotations without
any extra modifications to the original program.

C. Updatable Password Checker

We consider a password checker with a provision for
updating the password via a gateway method. Listing 9
shows the class UpdatablePasswordChecker annotated with
the @Enclave annotation. It contains a secret field password

and two gateway methods, namely, checkPassword and
updatePassword. The checkPassword method (Line 12)
compares the argument guess with the field password and
returns the result of the comparison as a boolean. Method
updatePassword (Line 7) assigns the value of the argument
newPass to the secret field password (Line 9). This case
study illustrates the HRAA attack scenario. The attacker can
reorder the calling sequence of gateway methods. Since the
gateway method updatePassword assigns an untrusted value
to the secret field password (Line 9), the secret field can no
longer be trusted. Therefore, we infer the security level of the
password secret field as <S,U>. The field password needs to
be endorsed (Line 15) to allow the declassification (Line 18).
JE detects secret fields that can be modified by an attacker
and the programmer needs to explicitly trust such fields to
allow any dependent declassification.

VIII. RELATED WORK

This section compares JE with closely related work on
securing distributed applications with TEEs, focusing on
information flow control, frameworks for TEEs, and secure
program partitioning.

1) Information flow control and enclaves: Recent works
leverage IFC and enclaves to build applications with strong
security guarantees. These works target specific challenges
in the domain space, including security foundations of
enclave applications, secure code partitioning for enclaves
and language support for programming in TEEs. JE pushes
the boundary in several directions providing: (a) language
support for Java applications in Intel SGX; (b) a security type



Listing 8: Medical data processing using Spark
1 class MainClass {
2

3 public static void main(String[] args) {
4 JavaSparkContext sc = new JavaSparkContext(
5 new SparkConf().setAppName("Foo"));
6 JavaRDD<EncRec> recList =
7 sc.parallelize(getEncryptedRecords());
8 List<StatRecord> recList = recList.map(x ->
9 StatUtil.process(x));

10 } }

11 @Enclave
12 class StatUtil {
13

14 @Secret static String key;
15

16 @Gateway
17 public static StatRecord process(EncRec rec) {
18 EncRec recE = endorse(rec);
19 Record rec = decrypt(key, recE);
20 // process the decrypted record
21 return declassify(rec);
22 } }

Listing 9: Updatable password checker
1 @Enclave
2 class UpdatablePasswordChecker {
3

4 @Secret static String password;
5

6 @Gateway
7 public static void updatePassword(String currPass, String newPass) {
8 if (checkPassword(currPass) == true) {
9 password = newPass;

10 } }
11 @Gateway
12 public static boolean checkPassword(String guess) {
13 boolean result = false;
14 String guessE = endorse(guess);
15 if (endorse(password).equals(guessE)) { // endorsing password
16 result = true; // result of type <S,T>
17 }
18 return declassify(result); // declassifying result
19 } }

system enabling verification of secure partitioning against
realistic attacker models; (c) formalization and soundness
proofs with respect to semantic characterization of security;
(d) a prototype implementation supported by case studies.

Sinha et al. [15] present Moat, a system for statically
verifying confidentiality properties of Intel SGX programs in
the presence of passive and active attackers. They combine a
flow sensitive type system with automated theorem proving
to check confidentiality policies with declassification. Their
active attacker is similar to our HAA attacker, assuming
arbitrary modification of non-SGX code. By contrast, we focus
on verifying robustness of an application against active attacker
which has the advantage of using a more lightweight analysis
whenever a program is already proved secure against passive
attackers. Moreover, we consider more powerful attackers,
and target languages with managed runtimes, thus shielding
developers from SGX-specific details. Follow-up work by
Sinha et al. [41] enforces Information Release Confinement,
an access control policy which allows SGX code to perform
arbitrary computations ensuring that it can only generate
output to the non-SGX memory through encrypted channels.
While this approach cannot enforce expressive information
flow policies, it implements Control Flow Integrity to ensure
that an active attacker does not compromise the control flow of
an executions. Our approach would require similar techniques
to enforce security against the HRAA attacker.

Inspired by Moat, Gollamudi and Chong [16] propose a se-
curity type system to enforce flexible information flow policies
for an SGX-enabled imperative language. They abstract away
the details of enclave management and develop a translation
tool to automatically infer the parts of the program to be

executed inside the enclaves. They consider active attackers
and formalize security using knowledge-based conditions. By
contrast, our approach enforces robustness for a mainstream
language like Java. Recent work by Gollamudi et al. [42]
uses enclaves to enforce more expressive confidentiality and
integrity against passive attackers in a distributed setting.
Like us, both works come with soundness proofs of security,
with the key difference that our work targets robustness
instead of variants of noninterference. Liu et al. [43], [44]
study automated program partitioning with SGX for passive
attackers. We argue that passive attackers are too weak in the
context of SGX, hence our work provides the formal grounds
for extending and proving their techniques in a realistic setting.

A large array of works study IFC in distributed settings [19],
[45], [46], [47], [48], [49]. These works address the problem
of secure program partitioning across nodes in a distributed
system under the assumption that low integrity nodes may be
controlled by an active attacker. Our work draws inspiration
from these approaches and extends them to capture attacker
models arising in TEEs.

Existing works target the foundations of IFC in presence of
active attackers [50], [21], [51], [52], [53], [20] and enforce
robustness via security type systems.

2) Programming frameworks for TEEs: To reduce the
trusted computing base, in contrast to running unmodified
applications inside SGX, some approaches focus on parti-
tioning the application into components that execute within
the enclave and the rest, which executes in the untrusted
environment. Glamdring [54] propose the first source-level
partitioning framework for securing C applications with Intel
SGX. Developers annotate sensitive data and Glamdring
automatically partitions the application into untrusted and
enclave parts. Panoply [55] generates application binaries
from the annotated source code where annotations specify
the parts of the application to be run inside separate enclaves.
DynSGX [56] provides tools to dynamically load, unload and
execute compiled functions inside SGX enclaves efficiently.
While these works leverage enclaves to enforce strong isolation
properties, they do not enforce application-level policies and
lack formal security guarantees.

Several works aim to ease the programming of applications
that (partially) execute within an enclave. Coppolino et al. [57]
present a comparative analysis of the existing approaches for
securing Java applications with Intel SGX. RUST-SGX [58]
provides memory-safe SGX support for Rust through a



memory management scheme to control the interface between
Rust and Intel’s C/C++ APIs. Civet [17] is a programming
framework for Java using an XML file to specify the classes
that are executed inside the enclave. Civet leverages dynamic
information flow control to track insecure flows within the
enclave. Uranus [59] supports executing Java functions inside
SGX enclaves. It provides two method-level annotations
JECall and JOCall to indicate methods to be executed inside
and outside the enclave respectively. Secure Routines [60]
is a programming framework for SGX in the Go language.
Programmers can execute Go functions (goroutine) inside
an enclave, and use low-overhead channels to communicate
with the untrusted environments. Like us, these works aim
at developing programming models with enclaves. However
they lack provable security guarantees and require security
analysis of the partitioned application from scratch.

Other works propose processor model calculi to capture
necessary conditions for safe remote execution of enclave
programs. Subramanyan et al. [61] introduce an abstract
processor model to verify the security guarantees of Intel
SGX under specific adversary capabilities. Sinha [62] studies
confidentiality risks that can be exploited by application and
infrastructure attacks in SGX applications. Autarky [63] is
a controlled-channel attack resistant framework based on a
modified SGX ISA.

3) Running unmodified applications inside SGX:
Haven [24] was the first system built to run unmodified Win-
dows legacy applications inside Intel SGX. SCONE [25] is a
Docker extension that uses SGX to protect container processes.
SGX-LKL [28], SGXKernel [26], Graphene-SGX [27], and
Occlum [64] are library OS based frameworks designed to
run unmodified Linux applications inside the SGX enclave.

4) Multitier programming and secure program partitioning:
The JE programming model is inspired by the multitier
programming paradigm [65], [66], [67] – for a comprehensive
overview of multitier programming, we refer to the survey
by Weisenburger et al. [68]. In multitier programming, the
code for different tiers is written as a single compilation unit
and the compiler automatically splits it into the components
associated to each individual tier. Different works extend the
multitier programming model with information flow policies
to build secure web applications via security type systems [69],
[70], [71], [72] and symbolic execution [73]. In contrast to
JE , none of these approaches enforce robustness properties.

IX. CONCLUSION

In this paper we present JE , a language for confidential
computing which supports enclave-enabled applications. First,
JE seamlessly integrates with a high-level, managed language,
and enables programmers to develop secure enclave-enabled
applications by adding annotations to Java programs. Second,
JE comes with a security model that accounts for realistic
attackers, that, in the case of enclave programming, can tamper
with the code and the data of the non-enclave environment. We
define the notion of robustness of enclave-enabled programs
and prove that it is correctly enforced by the JE type system.

We evaluate our approach on several use cases from
the literature, including a battleship game, a secure event
processing system, and a popular processing framework for
big data, showing that it can correctly handle complex cases
of partitioning, information flow, declassification and trust.

We envision different avenues for future work including
a generalization of our framework to multiple enclaves and
nonmalleable information flow. On the practical side, we
plan to extend our automated partitioning and compilation
algorithms to handle Java programs beyond the core JE
fragment.
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